Menu Close

calculate-0-dt-3-t-2-1-t-dt-




Question Number 44173 by abdo.msup.com last updated on 22/Sep/18
calculate ∫_0 ^∞    (dt/((3+t^2 )(√(1+t))))dt
calculate0dt(3+t2)1+tdt
Commented by maxmathsup by imad last updated on 23/Sep/18
let I =∫_0 ^∞   (dt/((3+t^2 )(√(1+t))))  changement (√(1+t))=x give 1+t =x^2  and  I =∫_0 ^∞      ((2xdx)/((3+(x^2 −1)^2 )x)) =∫_0 ^∞   ((2dx)/(3 +x^4  −2x^2  +1)) =∫_0 ^∞     ((2dx)/(x^4 −2x^2  +4))  =∫_0 ^∞     ((2dx)/((x^4  +4 −2x^2 ))) =∫_0 ^∞      ((2dx)/((x^2 +2)^2 −6x^2 )) =∫_0 ^∞    ((2dx)/((x^2  +2 +(√6)x)(x^(2 ) +2−(√6)x)))  =∫_0 ^∞      ((2dx)/((x^2  +x(√6)+2)(x^2 −(√6)x +2)))  let decompose  F(x)= (2/((x^2  +x(√6)+2)(x^2 −(√6)x +2))) ⇒F(x)=((ax+b)/(x^2  +x(√6)+2)) +((cx+d)/(x^2  −x(√6)+2))  F(−x) =F(x) ⇒((−ax +b)/(x^2 −x(√6)+2)) +((−cx +d)/(x^2 +x(√6)+2)) =F(x)⇒c=−a and b=d  ⇒F(x)= ((ax+b)/(x^2  +x(√6)+2)) +((−ax +b)/(x^2 −x(√6)+2))  F(0) =(1/2) =(b/2) +(b/2) =b ⇒b=(1/2)  F(1) =((a+(1/2))/(3+(√6))) +((−a +(1/2))/(3−(√6))) =(2/3) ⇒((2a+1)/(2(3+(√6)))) +(1/2)((−2a+1)/(3−(√6))) =(2/3) ⇒  ((2a+1)/(3+(√6))) +((−2a+1)/(3−(√6))) =(4/3) ⇒((2a(3−(√6)) +3−(√6)−2a(3+(√6)) +3+(√6))/3) =(4/3) ⇒  −4a(√6)+6 =4 ⇒−4a(√6)=−2 ⇒a =(1/(2(√6))) ⇒  F(x) =(((1/(2(√6)))x+(1/2))/(x^2  +x(√6)+2))  +((−(1/(2(√6)))x+(1/2))/(x^2  −x(√6)+2)) =(1/(2(√6))){  ((x+(√6))/(x^2  +x(√6)+2)) +((−x+(√6))/(x^2 −x(√6)+2))} ⇒  2(√6) ∫ F(x)= (1/2)∫   ((2x+2(√6))/(x^2  +x(√6)+2))dx −(1/2) ∫  ((2x−2(√6))/(x^2 −x(√6)+2))dx  =(1/2)ln∣((x^2  +x(√6)+2)/(x^2 −x(√6)+2))∣ +(√6)∫   (dx/(x^2  +x(√6)+2)) +(√6) ∫   (dx/(x^2 −x(√6)+2)) but  ∫    (dx/(x^2 +x(√6)+2)) =∫   (dx/(x^2  +2((√6)/2)x +(3/2) +2−(3/2))) =∫   (dx/((x+((√6)/2))^2  +(1/2)))  =_(x+((√6)/2)=(u/( (√2))))      2∫    (1/(1+u^2 )) (du/( (√2))) =(√2)arctan (x(√2)+(√3))+c_1   also  ∫    (dx/(x^2 −x(√6)+2)) =(√2)arctan(x(√2)−(√3)) +c ⇒  2(√6)∫_0 ^(+∞) F(x)dx =[(1/2)ln∣((x^2  +x(√6)+2)/(x^2  −x(√6)+2))∣]_0 ^(+∞)  +(√6)[(√2)arctan(x(√2)+(√3))]_0 ^(+∞)   +(√6)[(√2)arctan(x(√2)−(√3))]_0 ^(+∞)   =(√6){(π/2)(√2)−(√2)arctan((√3))}+(√6){(π/2)(√2)+(√2)arctan((√3))}  =π(√3)  +π(√3) =2π(√3) ⇒∫_0 ^∞  F(x)dx =((2π(√3))/(2(√6))) =(π/( (√2))) ⇒ I = (π/( (√2))) .
letI=0dt(3+t2)1+tchangement1+t=xgive1+t=x2andI=02xdx(3+(x21)2)x=02dx3+x42x2+1=02dxx42x2+4=02dx(x4+42x2)=02dx(x2+2)26x2=02dx(x2+2+6x)(x2+26x)=02dx(x2+x6+2)(x26x+2)letdecomposeF(x)=2(x2+x6+2)(x26x+2)F(x)=ax+bx2+x6+2+cx+dx2x6+2F(x)=F(x)ax+bx2x6+2+cx+dx2+x6+2=F(x)c=aandb=dF(x)=ax+bx2+x6+2+ax+bx2x6+2F(0)=12=b2+b2=bb=12F(1)=a+123+6+a+1236=232a+12(3+6)+122a+136=232a+13+6+2a+136=432a(36)+362a(3+6)+3+63=434a6+6=44a6=2a=126F(x)=126x+12x2+x6+2+126x+12x2x6+2=126{x+6x2+x6+2+x+6x2x6+2}26F(x)=122x+26x2+x6+2dx122x26x2x6+2dx=12lnx2+x6+2x2x6+2+6dxx2+x6+2+6dxx2x6+2butdxx2+x6+2=dxx2+262x+32+232=dx(x+62)2+12=x+62=u2211+u2du2=2arctan(x2+3)+c1alsodxx2x6+2=2arctan(x23)+c260+F(x)dx=[12lnx2+x6+2x2x6+2]0++6[2arctan(x2+3)]0++6[2arctan(x23)]0+=6{π222arctan(3)}+6{π22+2arctan(3)}=π3+π3=2π30F(x)dx=2π326=π2I=π2.
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Sep/18
y^2 =1+t   dt=2ydy  ∫_1 ^∞ ((2ydy)/(y(3+y^4 −2y^2 +1)))  ∫_1 ^∞ ((2dy)/((y^4 −2y^2 +4)))  ∫_1 ^∞ ((2/y^2 )/((y^2 −2+(4/y^2 ))))dy  d(y+(2/y))=1−(2/y^2 )  d(y−(2/y))=1+(2/y^2 )  (1/2)∫_1 ^∞  (((1+(2/y^2 ))−(1−(2/y^2 )))/((y^2 +(4/y^2 )−2)))dy  (1/2)∫_1 ^∞ ((d(y−(2/y))−d(y+(2/y)))/((y^2 +(4/y^2 )−2)))  (1/2)[∫_1 ^∞ ((d(y−(2/y)))/((y−(2/y))^2 +2.y.(2/y)−2))−∫_1 ^∞ ((d(y+(2/y)))/((y+(2/y))^2 −2.y.(2/y)+2))]  (1/2)[∫_(−1) ^∞  (dx_1 /(x_1 ^2 +2))+∫_3 ^∞ (dx_2 /(x_2 ^2 −2))] now use formula  (1/2)[(1/( (√2) ))∣tan^(−1) ((x_1 /( (√2) )))∣_(−1) ^∞ +(1/(2(√2) ))∣ln(((x_2 −(√2) )/(x_2 +(√2))))∣_3 ^∞  ]  (1/2)[(1/( (√2)))((Π/2)−{tan^(−1) (((−1)/( (√2) )))}+(1/(2(√2)))∣ln(((1−((√2)/x_2 ))/(1+((√2)/x_2 ))))∣_3 ^∞ ]  (1/2)[(1/( (√2))){((Π/2)+tan^(−1) ((1/( (√2))))}+(1/(2(√2)))(0−ln∣(((3−(√2))/(3+(√2)))∣)]  pls check...
y2=1+tdt=2ydy12ydyy(3+y42y2+1)12dy(y42y2+4)12y2(y22+4y2)dyd(y+2y)=12y2d(y2y)=1+2y2121(1+2y2)(12y2)(y2+4y22)dy121d(y2y)d(y+2y)(y2+4y22)12[1d(y2y)(y2y)2+2.y.2y21d(y+2y)(y+2y)22.y.2y+2]12[1dx1x12+2+3dx2x222]nowuseformula12[12tan1(x12)1+122ln(x22x2+2)3]12[12(Π2{tan1(12)}+122ln(12x21+2x2)3]12[12{(Π2+tan1(12)}+122(0ln(323+2)]plscheck

Leave a Reply

Your email address will not be published. Required fields are marked *