Question Number 44173 by abdo.msup.com last updated on 22/Sep/18
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\left(\mathrm{3}+{t}^{\mathrm{2}} \right)\sqrt{\mathrm{1}+{t}}}{dt} \\ $$
Commented by maxmathsup by imad last updated on 23/Sep/18
$${let}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\left(\mathrm{3}+{t}^{\mathrm{2}} \right)\sqrt{\mathrm{1}+{t}}}\:\:{changement}\:\sqrt{\mathrm{1}+{t}}={x}\:{give}\:\mathrm{1}+{t}\:={x}^{\mathrm{2}} \:{and} \\ $$$${I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{\mathrm{2}{xdx}}{\left(\mathrm{3}+\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} \right){x}}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{2}{dx}}{\mathrm{3}\:+{x}^{\mathrm{4}} \:−\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{1}}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{2}{dx}}{{x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{4}} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{2}{dx}}{\left({x}^{\mathrm{4}} \:+\mathrm{4}\:−\mathrm{2}{x}^{\mathrm{2}} \right)}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{\mathrm{2}{dx}}{\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} −\mathrm{6}{x}^{\mathrm{2}} }\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{2}{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{2}\:+\sqrt{\mathrm{6}}{x}\right)\left({x}^{\mathrm{2}\:} +\mathrm{2}−\sqrt{\mathrm{6}}{x}\right)} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{\mathrm{2}{dx}}{\left({x}^{\mathrm{2}} \:+{x}\sqrt{\mathrm{6}}+\mathrm{2}\right)\left({x}^{\mathrm{2}} −\sqrt{\mathrm{6}}{x}\:+\mathrm{2}\right)}\:\:{let}\:{decompose} \\ $$$${F}\left({x}\right)=\:\frac{\mathrm{2}}{\left({x}^{\mathrm{2}} \:+{x}\sqrt{\mathrm{6}}+\mathrm{2}\right)\left({x}^{\mathrm{2}} −\sqrt{\mathrm{6}}{x}\:+\mathrm{2}\right)}\:\Rightarrow{F}\left({x}\right)=\frac{{ax}+{b}}{{x}^{\mathrm{2}} \:+{x}\sqrt{\mathrm{6}}+\mathrm{2}}\:+\frac{{cx}+{d}}{{x}^{\mathrm{2}} \:−{x}\sqrt{\mathrm{6}}+\mathrm{2}} \\ $$$${F}\left(−{x}\right)\:={F}\left({x}\right)\:\Rightarrow\frac{−{ax}\:+{b}}{{x}^{\mathrm{2}} −{x}\sqrt{\mathrm{6}}+\mathrm{2}}\:+\frac{−{cx}\:+{d}}{{x}^{\mathrm{2}} +{x}\sqrt{\mathrm{6}}+\mathrm{2}}\:={F}\left({x}\right)\Rightarrow{c}=−{a}\:{and}\:{b}={d} \\ $$$$\Rightarrow{F}\left({x}\right)=\:\frac{{ax}+{b}}{{x}^{\mathrm{2}} \:+{x}\sqrt{\mathrm{6}}+\mathrm{2}}\:+\frac{−{ax}\:+{b}}{{x}^{\mathrm{2}} −{x}\sqrt{\mathrm{6}}+\mathrm{2}} \\ $$$${F}\left(\mathrm{0}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\:=\frac{{b}}{\mathrm{2}}\:+\frac{{b}}{\mathrm{2}}\:={b}\:\Rightarrow{b}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${F}\left(\mathrm{1}\right)\:=\frac{{a}+\frac{\mathrm{1}}{\mathrm{2}}}{\mathrm{3}+\sqrt{\mathrm{6}}}\:+\frac{−{a}\:+\frac{\mathrm{1}}{\mathrm{2}}}{\mathrm{3}−\sqrt{\mathrm{6}}}\:=\frac{\mathrm{2}}{\mathrm{3}}\:\Rightarrow\frac{\mathrm{2}{a}+\mathrm{1}}{\mathrm{2}\left(\mathrm{3}+\sqrt{\mathrm{6}}\right)}\:+\frac{\mathrm{1}}{\mathrm{2}}\frac{−\mathrm{2}{a}+\mathrm{1}}{\mathrm{3}−\sqrt{\mathrm{6}}}\:=\frac{\mathrm{2}}{\mathrm{3}}\:\Rightarrow \\ $$$$\frac{\mathrm{2}{a}+\mathrm{1}}{\mathrm{3}+\sqrt{\mathrm{6}}}\:+\frac{−\mathrm{2}{a}+\mathrm{1}}{\mathrm{3}−\sqrt{\mathrm{6}}}\:=\frac{\mathrm{4}}{\mathrm{3}}\:\Rightarrow\frac{\mathrm{2}{a}\left(\mathrm{3}−\sqrt{\mathrm{6}}\right)\:+\mathrm{3}−\sqrt{\mathrm{6}}−\mathrm{2}{a}\left(\mathrm{3}+\sqrt{\mathrm{6}}\right)\:+\mathrm{3}+\sqrt{\mathrm{6}}}{\mathrm{3}}\:=\frac{\mathrm{4}}{\mathrm{3}}\:\Rightarrow \\ $$$$−\mathrm{4}{a}\sqrt{\mathrm{6}}+\mathrm{6}\:=\mathrm{4}\:\Rightarrow−\mathrm{4}{a}\sqrt{\mathrm{6}}=−\mathrm{2}\:\Rightarrow{a}\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{6}}}\:\Rightarrow \\ $$$${F}\left({x}\right)\:=\frac{\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{6}}}{x}+\frac{\mathrm{1}}{\mathrm{2}}}{{x}^{\mathrm{2}} \:+{x}\sqrt{\mathrm{6}}+\mathrm{2}}\:\:+\frac{−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{6}}}{x}+\frac{\mathrm{1}}{\mathrm{2}}}{{x}^{\mathrm{2}} \:−{x}\sqrt{\mathrm{6}}+\mathrm{2}}\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{6}}}\left\{\:\:\frac{{x}+\sqrt{\mathrm{6}}}{{x}^{\mathrm{2}} \:+{x}\sqrt{\mathrm{6}}+\mathrm{2}}\:+\frac{−{x}+\sqrt{\mathrm{6}}}{{x}^{\mathrm{2}} −{x}\sqrt{\mathrm{6}}+\mathrm{2}}\right\}\:\Rightarrow \\ $$$$\mathrm{2}\sqrt{\mathrm{6}}\:\int\:{F}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}}\int\:\:\:\frac{\mathrm{2}{x}+\mathrm{2}\sqrt{\mathrm{6}}}{{x}^{\mathrm{2}} \:+{x}\sqrt{\mathrm{6}}+\mathrm{2}}{dx}\:−\frac{\mathrm{1}}{\mathrm{2}}\:\int\:\:\frac{\mathrm{2}{x}−\mathrm{2}\sqrt{\mathrm{6}}}{{x}^{\mathrm{2}} −{x}\sqrt{\mathrm{6}}+\mathrm{2}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid\frac{{x}^{\mathrm{2}} \:+{x}\sqrt{\mathrm{6}}+\mathrm{2}}{{x}^{\mathrm{2}} −{x}\sqrt{\mathrm{6}}+\mathrm{2}}\mid\:+\sqrt{\mathrm{6}}\int\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+{x}\sqrt{\mathrm{6}}+\mathrm{2}}\:+\sqrt{\mathrm{6}}\:\int\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} −{x}\sqrt{\mathrm{6}}+\mathrm{2}}\:{but} \\ $$$$\int\:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} +{x}\sqrt{\mathrm{6}}+\mathrm{2}}\:=\int\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+\mathrm{2}\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}{x}\:+\frac{\mathrm{3}}{\mathrm{2}}\:+\mathrm{2}−\frac{\mathrm{3}}{\mathrm{2}}}\:=\int\:\:\:\frac{{dx}}{\left({x}+\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$=_{{x}+\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}=\frac{{u}}{\:\sqrt{\mathrm{2}}}} \:\:\:\:\:\mathrm{2}\int\:\:\:\:\frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }\:\frac{{du}}{\:\sqrt{\mathrm{2}}}\:=\sqrt{\mathrm{2}}{arctan}\:\left({x}\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}}\right)+{c}_{\mathrm{1}} \:\:{also} \\ $$$$\int\:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} −{x}\sqrt{\mathrm{6}}+\mathrm{2}}\:=\sqrt{\mathrm{2}}{arctan}\left({x}\sqrt{\mathrm{2}}−\sqrt{\mathrm{3}}\right)\:+{c}\:\Rightarrow \\ $$$$\mathrm{2}\sqrt{\mathrm{6}}\int_{\mathrm{0}} ^{+\infty} {F}\left({x}\right){dx}\:=\left[\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid\frac{{x}^{\mathrm{2}} \:+{x}\sqrt{\mathrm{6}}+\mathrm{2}}{{x}^{\mathrm{2}} \:−{x}\sqrt{\mathrm{6}}+\mathrm{2}}\mid\right]_{\mathrm{0}} ^{+\infty} \:+\sqrt{\mathrm{6}}\left[\sqrt{\mathrm{2}}{arctan}\left({x}\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}}\right)\right]_{\mathrm{0}} ^{+\infty} \\ $$$$+\sqrt{\mathrm{6}}\left[\sqrt{\mathrm{2}}{arctan}\left({x}\sqrt{\mathrm{2}}−\sqrt{\mathrm{3}}\right)\right]_{\mathrm{0}} ^{+\infty} \\ $$$$=\sqrt{\mathrm{6}}\left\{\frac{\pi}{\mathrm{2}}\sqrt{\mathrm{2}}−\sqrt{\mathrm{2}}{arctan}\left(\sqrt{\mathrm{3}}\right)\right\}+\sqrt{\mathrm{6}}\left\{\frac{\pi}{\mathrm{2}}\sqrt{\mathrm{2}}+\sqrt{\mathrm{2}}{arctan}\left(\sqrt{\mathrm{3}}\right)\right\} \\ $$$$=\pi\sqrt{\mathrm{3}}\:\:+\pi\sqrt{\mathrm{3}}\:=\mathrm{2}\pi\sqrt{\mathrm{3}}\:\Rightarrow\int_{\mathrm{0}} ^{\infty} \:{F}\left({x}\right){dx}\:=\frac{\mathrm{2}\pi\sqrt{\mathrm{3}}}{\mathrm{2}\sqrt{\mathrm{6}}}\:=\frac{\pi}{\:\sqrt{\mathrm{2}}}\:\Rightarrow\:{I}\:=\:\frac{\pi}{\:\sqrt{\mathrm{2}}}\:. \\ $$$$ \\ $$$$ \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Sep/18
$${y}^{\mathrm{2}} =\mathrm{1}+{t}\:\:\:{dt}=\mathrm{2}{ydy} \\ $$$$\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{2}{ydy}}{{y}\left(\mathrm{3}+{y}^{\mathrm{4}} −\mathrm{2}{y}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$$\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{2}{dy}}{\left({y}^{\mathrm{4}} −\mathrm{2}{y}^{\mathrm{2}} +\mathrm{4}\right)} \\ $$$$\int_{\mathrm{1}} ^{\infty} \frac{\frac{\mathrm{2}}{{y}^{\mathrm{2}} }}{\left({y}^{\mathrm{2}} −\mathrm{2}+\frac{\mathrm{4}}{{y}^{\mathrm{2}} }\right)}{dy} \\ $$$${d}\left({y}+\frac{\mathrm{2}}{{y}}\right)=\mathrm{1}−\frac{\mathrm{2}}{{y}^{\mathrm{2}} } \\ $$$${d}\left({y}−\frac{\mathrm{2}}{{y}}\right)=\mathrm{1}+\frac{\mathrm{2}}{{y}^{\mathrm{2}} } \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{1}} ^{\infty} \:\frac{\left(\mathrm{1}+\frac{\mathrm{2}}{{y}^{\mathrm{2}} }\right)−\left(\mathrm{1}−\frac{\mathrm{2}}{{y}^{\mathrm{2}} }\right)}{\left({y}^{\mathrm{2}} +\frac{\mathrm{4}}{{y}^{\mathrm{2}} }−\mathrm{2}\right)}{dy} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{1}} ^{\infty} \frac{{d}\left({y}−\frac{\mathrm{2}}{{y}}\right)−{d}\left({y}+\frac{\mathrm{2}}{{y}}\right)}{\left({y}^{\mathrm{2}} +\frac{\mathrm{4}}{{y}^{\mathrm{2}} }−\mathrm{2}\right)} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left[\int_{\mathrm{1}} ^{\infty} \frac{{d}\left({y}−\frac{\mathrm{2}}{{y}}\right)}{\left({y}−\frac{\mathrm{2}}{{y}}\right)^{\mathrm{2}} +\mathrm{2}.{y}.\frac{\mathrm{2}}{{y}}−\mathrm{2}}−\int_{\mathrm{1}} ^{\infty} \frac{{d}\left({y}+\frac{\mathrm{2}}{{y}}\right)}{\left({y}+\frac{\mathrm{2}}{{y}}\right)^{\mathrm{2}} −\mathrm{2}.{y}.\frac{\mathrm{2}}{{y}}+\mathrm{2}}\right] \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left[\int_{−\mathrm{1}} ^{\infty} \:\frac{{dx}_{\mathrm{1}} }{{x}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{2}}+\int_{\mathrm{3}} ^{\infty} \frac{{dx}_{\mathrm{2}} }{{x}_{\mathrm{2}} ^{\mathrm{2}} −\mathrm{2}}\right]\:{now}\:{use}\:{formula} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}\:}\mid{tan}^{−\mathrm{1}} \left(\frac{{x}_{\mathrm{1}} }{\:\sqrt{\mathrm{2}}\:}\right)\mid_{−\mathrm{1}} ^{\infty} +\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}\:}\mid{ln}\left(\frac{{x}_{\mathrm{2}} −\sqrt{\mathrm{2}}\:}{{x}_{\mathrm{2}} +\sqrt{\mathrm{2}}}\right)\mid_{\mathrm{3}} ^{\infty} \:\right] \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left(\frac{\Pi}{\mathrm{2}}−\left\{{tan}^{−\mathrm{1}} \left(\frac{−\mathrm{1}}{\:\sqrt{\mathrm{2}}\:}\right)\right\}+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\mid{ln}\left(\frac{\mathrm{1}−\frac{\sqrt{\mathrm{2}}}{{x}_{\mathrm{2}} }}{\mathrm{1}+\frac{\sqrt{\mathrm{2}}}{{x}_{\mathrm{2}} }}\right)\mid_{\mathrm{3}} ^{\infty} \right]\right. \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left\{\left(\frac{\Pi}{\mathrm{2}}+{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)\right\}+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\left(\mathrm{0}−{ln}\mid\left(\frac{\mathrm{3}−\sqrt{\mathrm{2}}}{\mathrm{3}+\sqrt{\mathrm{2}}}\mid\right)\right]\right.\right. \\ $$$${pls}\:{check}… \\ $$$$ \\ $$