calculate-0-dt-3-t-2-1-t-dt- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 44173 by abdo.msup.com last updated on 22/Sep/18 calculate∫0∞dt(3+t2)1+tdt Commented by maxmathsup by imad last updated on 23/Sep/18 letI=∫0∞dt(3+t2)1+tchangement1+t=xgive1+t=x2andI=∫0∞2xdx(3+(x2−1)2)x=∫0∞2dx3+x4−2x2+1=∫0∞2dxx4−2x2+4=∫0∞2dx(x4+4−2x2)=∫0∞2dx(x2+2)2−6x2=∫0∞2dx(x2+2+6x)(x2+2−6x)=∫0∞2dx(x2+x6+2)(x2−6x+2)letdecomposeF(x)=2(x2+x6+2)(x2−6x+2)⇒F(x)=ax+bx2+x6+2+cx+dx2−x6+2F(−x)=F(x)⇒−ax+bx2−x6+2+−cx+dx2+x6+2=F(x)⇒c=−aandb=d⇒F(x)=ax+bx2+x6+2+−ax+bx2−x6+2F(0)=12=b2+b2=b⇒b=12F(1)=a+123+6+−a+123−6=23⇒2a+12(3+6)+12−2a+13−6=23⇒2a+13+6+−2a+13−6=43⇒2a(3−6)+3−6−2a(3+6)+3+63=43⇒−4a6+6=4⇒−4a6=−2⇒a=126⇒F(x)=126x+12x2+x6+2+−126x+12x2−x6+2=126{x+6x2+x6+2+−x+6x2−x6+2}⇒26∫F(x)=12∫2x+26x2+x6+2dx−12∫2x−26x2−x6+2dx=12ln∣x2+x6+2x2−x6+2∣+6∫dxx2+x6+2+6∫dxx2−x6+2but∫dxx2+x6+2=∫dxx2+262x+32+2−32=∫dx(x+62)2+12=x+62=u22∫11+u2du2=2arctan(x2+3)+c1also∫dxx2−x6+2=2arctan(x2−3)+c⇒26∫0+∞F(x)dx=[12ln∣x2+x6+2x2−x6+2∣]0+∞+6[2arctan(x2+3)]0+∞+6[2arctan(x2−3)]0+∞=6{π22−2arctan(3)}+6{π22+2arctan(3)}=π3+π3=2π3⇒∫0∞F(x)dx=2π326=π2⇒I=π2. Answered by tanmay.chaudhury50@gmail.com last updated on 23/Sep/18 y2=1+tdt=2ydy∫1∞2ydyy(3+y4−2y2+1)∫1∞2dy(y4−2y2+4)∫1∞2y2(y2−2+4y2)dyd(y+2y)=1−2y2d(y−2y)=1+2y212∫1∞(1+2y2)−(1−2y2)(y2+4y2−2)dy12∫1∞d(y−2y)−d(y+2y)(y2+4y2−2)12[∫1∞d(y−2y)(y−2y)2+2.y.2y−2−∫1∞d(y+2y)(y+2y)2−2.y.2y+2]12[∫−1∞dx1x12+2+∫3∞dx2x22−2]nowuseformula12[12∣tan−1(x12)∣−1∞+122∣ln(x2−2x2+2)∣3∞]12[12(Π2−{tan−1(−12)}+122∣ln(1−2x21+2x2)∣3∞]12[12{(Π2+tan−1(12)}+122(0−ln∣(3−23+2∣)]plscheck… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: The-number-of-solutions-of-the-equation-cos-1-x-2-1-x-2-1-sin-1-2x-x-2-1-tan-1-2x-x-2-1-2pi-3-Next Next post: Question-175247 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.