Menu Close

calculate-0-dx-1-2-x-2-2-




Question Number 89714 by abdomathmax last updated on 18/Apr/20
calculate ∫_0 ^∞    (dx/((1+(√(2+x^2 )))^2 ))
calculate0dx(1+2+x2)2
Commented by mathmax by abdo last updated on 19/Apr/20
parametric method let f(t)=∫_0 ^∞   (dx/(t+(√(2+x^2 ))))  with t>0  f^′ (t)=−∫_0 ^∞   (dx/((t+(√(2+x^2 )))^2 )) ⇒∫_0 ^∞  (dx/((t+(√(2+x^2 )))^2 )) =−f^′ (t)   changement x =(√2)sh(u) give  f(t)=∫_0 ^∞   (((√2)ch(u)du)/(t +(√2)ch(u))) =(√2)∫_0 ^∞   (((e^u +e^(−u) )/2)/(t+(√2)×((e^u +e^(−u) )/2)))du  =(√2)∫_0 ^∞   ((e^u +e^(−u) )/(2t+(√2)e^u  +(√2)e^(−u) ))du =_(e^u =z)   (√2)∫_1 ^∞   ((z+z^(−1) )/(2t+(√2)z +(√2)z^(−1) ))×(dz/z)  =(√2)∫_1 ^(+∞)   ((z+z^(−1) )/(2tz +(√2)z^2  +(√2))) dz  =(√2)∫_1 ^(+∞)   ((z^2  +1)/(z((√2)z^2  +2tz +(√2))))dz decoposition of g(z)=((z^2  +1)/(z((√2)z^2  +2tz +(√2))))  (√2)z^2  +2tz +(√2)=0 →Δ^′ =t^2 −2<0  if t<(√2)  z_1 =((−t+i(√(2−t^2 )))/( (√2)))  and z_2 =((−t−i(√(2−t^2 )))/( (√2)))  g(z)=((z^2  +1)/( (√2)z(z−z_1 )(z−z_2 ))) =(a/z) +(b/(z−z_1 )) +(c/(z−z_2 ))  a =(1/( (√2)z_1 z_2 )) =(1/( (√2)))   ,b =((z_1 ^2  +1)/( (√2)z_1 (√2)i(√(2−t^2 )))) =((1+z_1 ^2 )/(2iz_1 (√(2−t^2 ))))  b=((z_2 ^2  +1)/( (√2)z_2 (−(√2)i(√(2−t^2 ))))) =((1+z_2 ^2 )/(−2iz_2 (√(2−t^2 )))) ⇒  ∫_1 ^(+∞) g(z)dz =∫_1 ^(+∞) ((a/z)+(b/(z−z_1 )) +(c/(z−z_2 )))dz  =[aln∣z∣ +bln∣z−z_1 ∣ +cln∣z−z_2 ∣]_1 ^(+∞)  rest to simplify b and c  be continued...
parametricmethodletf(t)=0dxt+2+x2witht>0f(t)=0dx(t+2+x2)20dx(t+2+x2)2=f(t)changementx=2sh(u)givef(t)=02ch(u)dut+2ch(u)=20eu+eu2t+2×eu+eu2du=20eu+eu2t+2eu+2eudu=eu=z21z+z12t+2z+2z1×dzz=21+z+z12tz+2z2+2dz=21+z2+1z(2z2+2tz+2)dzdecopositionofg(z)=z2+1z(2z2+2tz+2)2z2+2tz+2=0Δ=t22<0ift<2z1=t+i2t22andz2=ti2t22g(z)=z2+12z(zz1)(zz2)=az+bzz1+czz2a=12z1z2=12,b=z12+12z12i2t2=1+z122iz12t2b=z22+12z2(2i2t2)=1+z222iz22t21+g(z)dz=1+(az+bzz1+czz2)dz=[alnz+blnzz1+clnzz2]1+resttosimplifybandcbecontinued
Answered by MJS last updated on 18/Apr/20
∫(dx/((1+(√(x^2 +2)))^2 ))=       [t=((x+(√(x^2 +2)))/( (√2))) → dx=((√(2(x^2 +2)))/(x+(√(x^2 +2))))dt]  =(√2)∫((t^2 +1)/((t^2 +(√2)t+1)^2 ))dt=       [Ostrogradski]  =(((√2)t+2)/(t^2 +(√2)t+1))+2(√2)∫(dt/(t^2 +(√2)t+1))=  =(((√2)t+2)/(t^2 +(√2)t+1))+4arctan ((√2)t+1) =  =((x^2 +x+1−x(√(x^2 +2)))/(x^2 +1))+4arctan (x+1+(√(x^2 +2))) +C  ⇒  ∫_0 ^∞ (dx/((1+(√(x^2 +2)))^2 ))=(π/2)−1
dx(1+x2+2)2=[t=x+x2+22dx=2(x2+2)x+x2+2dt]=2t2+1(t2+2t+1)2dt=[Ostrogradski]=2t+2t2+2t+1+22dtt2+2t+1==2t+2t2+2t+1+4arctan(2t+1)==x2+x+1xx2+2x2+1+4arctan(x+1+x2+2)+C0dx(1+x2+2)2=π21
Commented by turbo msup by abdo last updated on 18/Apr/20
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *