Menu Close

calculate-0-dx-1-e-x-1-e-x-




Question Number 34267 by math khazana by abdo last updated on 03/May/18
calculate  ∫_0 ^(+∞)     (dx/((1+e^x )(1+e^(−x) ))) .
$${calculate}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{e}^{{x}} \right)\left(\mathrm{1}+{e}^{−{x}} \right)}\:. \\ $$
Commented by math khazana by abdo last updated on 07/May/18
changement  e^x =t give  I = ∫_1 ^(+∞)     (1/((1+t)(1+(1/t)))) (dt/t)  = ∫_1 ^(+∞)     (dt/((1+t)(t+1))) = ∫_1 ^(+∞)   (dt/((t+1)^2 ))  =[−(1/(t+1))]_1 ^(+∞)  = (1/2)  .
$${changement}\:\:{e}^{{x}} ={t}\:{give} \\ $$$${I}\:=\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\:\frac{\mathrm{1}}{\left(\mathrm{1}+{t}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{t}}\right)}\:\frac{{dt}}{{t}} \\ $$$$=\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}\right)\left({t}+\mathrm{1}\right)}\:=\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{dt}}{\left({t}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\left[−\frac{\mathrm{1}}{{t}+\mathrm{1}}\right]_{\mathrm{1}} ^{+\infty} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *