Menu Close

calculate-0-dx-1-x-2-x-4-




Question Number 51324 by Abdo msup. last updated on 25/Dec/18
calculate ∫_0 ^(+∞)      (dx/(1+x^(2 )  +x^4 ))
calculate0+dx1+x2+x4
Answered by tanmay.chaudhury50@gmail.com last updated on 26/Dec/18
∫(dx/(x^4 +x^2 +1))  (1/2)∫((2/x^2 )/(x^2 +1+(1/x^2 )))  (1/2)∫(((1+(1/x^2 ))−(1−(1/x^2 )))/((x^2 +(1/x^2 )+1)))dx  (1/2)∫((d(x−(1/x)))/((x−(1/x))^2 +3))−(1/2)∫((d(x+(1/x)))/((x+(1/x))^2 −1))  (1/2)×(1/( (√3)))tan^(−1) (((x−(1/x))/( (√3))))−(1/2)×(1/2)ln(((x+(1/x)−1)/(x+(1/x)+1)))+c_1   =(1/(2(√3)))×tan^(−1) (((x^2 −1)/(x(√3))))−(1/4)ln(((x^2 −x+1)/(x^2 +x+1)))+c_1   required answer  =∣(1/(2(√3)))tan^(−1) (((x^2 −1)/(x(√3))))−(1/4)ln(((1−(1/x)+(1/x^2 ))/(1+(1/x)+(1/x^2 ))))∣_0 ^∞   =∣(1/(2(√3)))tan^(−1) (((1−(1/x^2 ))/((√3)/x)))−do∣_0 ^∞   =(1/(2(√3)))[tan^(−1) (((1−0)/0))−tan^(−1) (((0^2 −1)/(0×(√3))))]−(1/4)[ln(((1−0+0)/(1+0+0)))−ln(((0^2 −0+1)/(0^2 +0+1)))]  =(1/(2(√3)))[tan(∞)−tan^(−1) (−∞)]−do  =(1/(2(√3)))[(π/2)−(((−π)/2))]  =(π/(2(√3)))
dxx4+x2+1122x2x2+1+1x212(1+1x2)(11x2)(x2+1x2+1)dx12d(x1x)(x1x)2+312d(x+1x)(x+1x)2112×13tan1(x1x3)12×12ln(x+1x1x+1x+1)+c1=123×tan1(x21x3)14ln(x2x+1x2+x+1)+c1requiredanswer=∣123tan1(x21x3)14ln(11x+1x21+1x+1x2)0=∣123tan1(11x23x)do0=123[tan1(100)tan1(0210×3)]14[ln(10+01+0+0)ln(020+102+0+1)]=123[tan()tan1()]do=123[π2(π2)]=π23
Commented by peter frank last updated on 26/Dec/18
nice work sir
niceworksir
Answered by Smail last updated on 26/Dec/18
(1/((x^2 +x+1)(x^2 −x+1)))=((ax+b)/(x^2 +x+1))+((cx+d)/(x^2 −x+1))  a=−c  ,  d=1−b  b=1−a  a=b=−c=d=(1/2)   A=∫_0 ^∞ (dx/(1+x^2 +x^4 ))=(1/2)∫_0 ^∞ ((x+1)/(x^2 +x+1))dx−(1/2)∫_0 ^∞ ((x−1)/(x^2 −x+1))dx  =(1/4)∫_0 ^∞ ((2x+1+1)/(x^2 +x+1))dx−(1/4)∫_0 ^∞ ((2x−1−1)/(x^2 −x+1))dx  =(1/4)[ln∣((x^2 +x+1)/(x^2 −x+1))∣]_0 ^∞ +(1/4)∫_0 ^∞ (dx/((x+(1/2))^2 +(3/4)))+(1/4)∫_0 ^∞ (dx/((x−(1/2))^2 +(3/4)))  =(1/3)∫_0 ^∞ (dx/((((2x+1)/( (√3))))^2 +1))+(1/3)∫_0 ^∞ (dx/((((2x−1)/( (√3))))^2 +1))  t=((2x+_− 1)/( (√3)))⇒dx=((√3)/2)dt  A=(1/(2(√3)))∫_(1/(√3)) ^∞ (dt/(t^2 +1))+(1/(2(√3)))∫_(−1/(√3)) ^∞ (dt/(t^2 +1))  =(1/(2(√3)))[tan^(−1) (t)]_(1/(√3)) ^∞ +(1/(2(√3)))[tan^(−1) (t)]_(−1/(√3)) ^∞   =(1/(2(√3)))((π/2)−tan^(−1) (((√3)/3)))+(1/(2(√3)))((π/2)+tan^(−1) (((√3)/3)))  =(π/(2(√3)))
1(x2+x+1)(x2x+1)=ax+bx2+x+1+cx+dx2x+1a=c,d=1bb=1aa=b=c=d=12A=0dx1+x2+x4=120x+1x2+x+1dx120x1x2x+1dx=1402x+1+1x2+x+1dx1402x11x2x+1dx=14[lnx2+x+1x2x+1]0+140dx(x+12)2+34+140dx(x12)2+34=130dx(2x+13)2+1+130dx(2x13)2+1t=2x+13dx=32dtA=1231/3dtt2+1+1231/3dtt2+1=123[tan1(t)]1/3+123[tan1(t)]1/3=123(π2tan1(33))+123(π2+tan1(33))=π23
Commented by peter frank last updated on 26/Dec/18
nice work sir
niceworksir

Leave a Reply

Your email address will not be published. Required fields are marked *