Question Number 51324 by Abdo msup. last updated on 25/Dec/18

Answered by tanmay.chaudhury50@gmail.com last updated on 26/Dec/18
![∫(dx/(x^4 +x^2 +1)) (1/2)∫((2/x^2 )/(x^2 +1+(1/x^2 ))) (1/2)∫(((1+(1/x^2 ))−(1−(1/x^2 )))/((x^2 +(1/x^2 )+1)))dx (1/2)∫((d(x−(1/x)))/((x−(1/x))^2 +3))−(1/2)∫((d(x+(1/x)))/((x+(1/x))^2 −1)) (1/2)×(1/( (√3)))tan^(−1) (((x−(1/x))/( (√3))))−(1/2)×(1/2)ln(((x+(1/x)−1)/(x+(1/x)+1)))+c_1 =(1/(2(√3)))×tan^(−1) (((x^2 −1)/(x(√3))))−(1/4)ln(((x^2 −x+1)/(x^2 +x+1)))+c_1 required answer =∣(1/(2(√3)))tan^(−1) (((x^2 −1)/(x(√3))))−(1/4)ln(((1−(1/x)+(1/x^2 ))/(1+(1/x)+(1/x^2 ))))∣_0 ^∞ =∣(1/(2(√3)))tan^(−1) (((1−(1/x^2 ))/((√3)/x)))−do∣_0 ^∞ =(1/(2(√3)))[tan^(−1) (((1−0)/0))−tan^(−1) (((0^2 −1)/(0×(√3))))]−(1/4)[ln(((1−0+0)/(1+0+0)))−ln(((0^2 −0+1)/(0^2 +0+1)))] =(1/(2(√3)))[tan(∞)−tan^(−1) (−∞)]−do =(1/(2(√3)))[(π/2)−(((−π)/2))] =(π/(2(√3)))](https://www.tinkutara.com/question/Q51336.png)
Commented by peter frank last updated on 26/Dec/18

Answered by Smail last updated on 26/Dec/18
![(1/((x^2 +x+1)(x^2 −x+1)))=((ax+b)/(x^2 +x+1))+((cx+d)/(x^2 −x+1)) a=−c , d=1−b b=1−a a=b=−c=d=(1/2) A=∫_0 ^∞ (dx/(1+x^2 +x^4 ))=(1/2)∫_0 ^∞ ((x+1)/(x^2 +x+1))dx−(1/2)∫_0 ^∞ ((x−1)/(x^2 −x+1))dx =(1/4)∫_0 ^∞ ((2x+1+1)/(x^2 +x+1))dx−(1/4)∫_0 ^∞ ((2x−1−1)/(x^2 −x+1))dx =(1/4)[ln∣((x^2 +x+1)/(x^2 −x+1))∣]_0 ^∞ +(1/4)∫_0 ^∞ (dx/((x+(1/2))^2 +(3/4)))+(1/4)∫_0 ^∞ (dx/((x−(1/2))^2 +(3/4))) =(1/3)∫_0 ^∞ (dx/((((2x+1)/( (√3))))^2 +1))+(1/3)∫_0 ^∞ (dx/((((2x−1)/( (√3))))^2 +1)) t=((2x+_− 1)/( (√3)))⇒dx=((√3)/2)dt A=(1/(2(√3)))∫_(1/(√3)) ^∞ (dt/(t^2 +1))+(1/(2(√3)))∫_(−1/(√3)) ^∞ (dt/(t^2 +1)) =(1/(2(√3)))[tan^(−1) (t)]_(1/(√3)) ^∞ +(1/(2(√3)))[tan^(−1) (t)]_(−1/(√3)) ^∞ =(1/(2(√3)))((π/2)−tan^(−1) (((√3)/3)))+(1/(2(√3)))((π/2)+tan^(−1) (((√3)/3))) =(π/(2(√3)))](https://www.tinkutara.com/question/Q51349.png)
Commented by peter frank last updated on 26/Dec/18
