Menu Close

calculate-0-dx-2x-1-4-x-3-5-




Question Number 146196 by mathmax by abdo last updated on 11/Jul/21
calculate ∫_0 ^∞    (dx/((2x+1)^4 (x+3)^5 ))
calculate0dx(2x+1)4(x+3)5
Answered by mathmax by abdo last updated on 12/Jul/21
Ψ=∫_0 ^∞  (dx/((2x+1)^4 (x+3)^5 )) ⇒Ψ=∫_0 ^∞   (dx/((((2x+1)/(x+3)))^4 (x+3)^9 ))  we do the changement ((2x+1)/(x+3))=t ⇒2x+1=tx+3t ⇒(2−t)x=3t−1  ⇒x=((3t−1)/(2−t)) ⇒(dx/dt)=((3(2−t)−(3t−1)(−1))/((2−t)^2 ))=((6−3t+3t−1)/((2−t)^2 ))=(5/((2−t)^2 ))  x+3=((3t−1)/(2−t))+3=((3t−1+6−3t)/(2−t))=(5/(2−t)) ⇒  Ψ=∫_(1/3) ^2  (5/((2−t)^2 t^4 ((5/(2−t)))^9 ))dt =(1/5^8 )∫_(1/3) ^2  (((2−t)^7 )/t^4 )dt  =(1/5^8 )∫_(1/3) ^2  ((Σ_(k=0) ^7  C_7 ^k (−t)^k  2^(7−k) )/t^4 )dt  =(2^7 /5^8 )∫_(1/3) ^2  Σ_(k=0) ^7  C_7 ^k  (−1)^k  t^(k−4) 2^(−k)  dt  =(2^7 /5^8 )Σ_(k=0) ^7  (−1)^k 2^(−k)  C_7 ^k  ∫_(1/3) ^2  t^(k−4)  dt  =(2^7 /5^8 ){Σ_(k=0 and k≠3) ^7  (−(1/2))^k  C_7 ^k  [(1/(k−3))t^(k−3) ]_(1/3) ^2  −(1/8)C_7 ^3  [log∣t∣]_(1/3) ^2 }  Ψ=(2^7 /5^8 )Σ_(k=0and k≠3) ^7    (−(1/2))^k  (C_7 ^k /(k−3))(2^(k−3) −(1/3^(k−3) ))  −(2^7 /(8.5^8 ))C_7 ^3  (log2+log3)
Ψ=0dx(2x+1)4(x+3)5Ψ=0dx(2x+1x+3)4(x+3)9wedothechangement2x+1x+3=t2x+1=tx+3t(2t)x=3t1x=3t12tdxdt=3(2t)(3t1)(1)(2t)2=63t+3t1(2t)2=5(2t)2x+3=3t12t+3=3t1+63t2t=52tΨ=1325(2t)2t4(52t)9dt=158132(2t)7t4dt=158132k=07C7k(t)k27kt4dt=2758132k=07C7k(1)ktk42kdt=2758k=07(1)k2kC7k132tk4dt=2758{k=0andk37(12)kC7k[1k3tk3]13218C73[logt]132}Ψ=2758k=0andk37(12)kC7kk3(2k313k3)278.58C73(log2+log3)
Answered by Olaf_Thorendsen last updated on 12/Jul/21
R(x) = (1/((2x+1)^4 (x+3)^5 ))  R(x) = (((32)/(3125))/((2x+1)^4 ))−(((32)/(3125))/((2x+1)^3 ))+(((96)/(15625))/((2x+1)^2 ))  −(((224)/(78125))/(2x+1))+((1/(625))/((x+3)^5 ))+((8/(3125))/((x+3)^4 ))+((8/(3125))/((x+3)^3 ))  +(((32)/(15625))/((x+2)^2 ))+(((112)/(78125))/(x+3))  ∫R(x)dx = −(((16)/(9375))/((2x+1)^3 ))+((8/(3125))/((2x+1)^2 ))  −(((48)/(15625))/(2x+1))−((112)/(78125))ln(2x+1)−((1/(2500))/((x+3)^4 ))  −((8/(9375))/((x+3)^3 ))−((4/(3125))/((x+3)^2 ))−(((32)/(15625))/(x+3))  +((112)/(78125))ln(x+3)    Ω = ∫_0 ^∞ R(x)dx = ((15593)/(5062500))−((112)/(78125))ln6
R(x)=1(2x+1)4(x+3)5R(x)=323125(2x+1)4323125(2x+1)3+9615625(2x+1)2224781252x+1+1625(x+3)5+83125(x+3)4+83125(x+3)3+3215625(x+2)2+11278125x+3R(x)dx=169375(2x+1)3+83125(2x+1)248156252x+111278125ln(2x+1)12500(x+3)489375(x+3)343125(x+3)23215625x+3+11278125ln(x+3)Ω=0R(x)dx=15593506250011278125ln6
Commented by mathmax by abdo last updated on 12/Jul/21
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *