calculate-0-dx-2x-1-4-x-3-5- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 146196 by mathmax by abdo last updated on 11/Jul/21 calculate∫0∞dx(2x+1)4(x+3)5 Answered by mathmax by abdo last updated on 12/Jul/21 Ψ=∫0∞dx(2x+1)4(x+3)5⇒Ψ=∫0∞dx(2x+1x+3)4(x+3)9wedothechangement2x+1x+3=t⇒2x+1=tx+3t⇒(2−t)x=3t−1⇒x=3t−12−t⇒dxdt=3(2−t)−(3t−1)(−1)(2−t)2=6−3t+3t−1(2−t)2=5(2−t)2x+3=3t−12−t+3=3t−1+6−3t2−t=52−t⇒Ψ=∫1325(2−t)2t4(52−t)9dt=158∫132(2−t)7t4dt=158∫132∑k=07C7k(−t)k27−kt4dt=2758∫132∑k=07C7k(−1)ktk−42−kdt=2758∑k=07(−1)k2−kC7k∫132tk−4dt=2758{∑k=0andk≠37(−12)kC7k[1k−3tk−3]132−18C73[log∣t∣]132}Ψ=2758∑k=0andk≠37(−12)kC7kk−3(2k−3−13k−3)−278.58C73(log2+log3) Answered by Olaf_Thorendsen last updated on 12/Jul/21 R(x)=1(2x+1)4(x+3)5R(x)=323125(2x+1)4−323125(2x+1)3+9615625(2x+1)2−224781252x+1+1625(x+3)5+83125(x+3)4+83125(x+3)3+3215625(x+2)2+11278125x+3∫R(x)dx=−169375(2x+1)3+83125(2x+1)2−48156252x+1−11278125ln(2x+1)−12500(x+3)4−89375(x+3)3−43125(x+3)2−3215625x+3+11278125ln(x+3)Ω=∫0∞R(x)dx=155935062500−11278125ln6 Commented by mathmax by abdo last updated on 12/Jul/21 thankyousir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-n-1-1-n-3-5-n-Next Next post: lnx-x-1-dx-La-primitive- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.