Menu Close

calculate-0-dx-2x-1-4-x-3-5-




Question Number 124531 by Bird last updated on 03/Dec/20
calculate ∫_0 ^∞  (dx/((2x+1)^4 (x+3)^5 ))
calculate0dx(2x+1)4(x+3)5
Answered by mathmax by abdo last updated on 04/Dec/20
let I =∫_0 ^∞  (dx/((2x+1)^4 (x+3)^5 )) ⇒I =∫_0 ^∞  (dx/((((2x+1)/(x+3)))^4 (x+3)^9 ))  we do the changement ((2x+1)/(x+3))=t ⇒2x+1=tx+3t ⇒(2−t)x=3t−1  ⇒x=((3t−1)/(2−t)) ⇒(dx/dt)=((3(2−t)−(3t−1)(−1))/((2−t)^2 ))=((6−3t+3t−1)/((2−t)^2 ))=(5/((2−t)^2 ))  and x+3=((3t−1)/(2−t))+3 =((3t−1+6−3t)/(2−t))=(5/(2−t)) ⇒  I =∫_(1/3) ^2  (5/((2−t)^2 t^4 ((5/(2−t)))^9 ))dt =(1/5^8 )∫_(1/3) ^2  (((2−t)^9 )/(t^4 ((2−t)^2 ))dt  =(1/5^8 )∫_(1/3) ^2   (((2−t)^7 )/t^4 )dt =−(1/5^8 )∫_(1/3) ^2  (((t−2)^7 )/t^4 )dt  =−(1/5^8 )∫_(1/3) ^2   ((Σ_(k=0) ^7  C_7 ^k  t^k (−2)^(7−k) )/t^4 )dt  =−(1/5^8 )Σ_(k0) ^7  (−2)^(7−k)  C_7 ^k   ∫_(1/3) ^2  t^(k−4)  dt  =−(1/5^8 ) {Σ_(k=0and k≠3) ^7  (−2)^(7−k)  C_7 ^k   [(1/(k−3))t^(k−3) ]_(1/3) ^2   +(−2)^4 C_7 ^3 [ln2−ln((1/3)))  I=−(1/5^8 )Σ_(k=0 and ≠3) ^7   (−2)^(7−k)  (C_7 ^k /(k−3)){2^(k−3) −(1/3^(k−3) )}  +16 C_7 ^3 ln(6)
letI=0dx(2x+1)4(x+3)5I=0dx(2x+1x+3)4(x+3)9wedothechangement2x+1x+3=t2x+1=tx+3t(2t)x=3t1x=3t12tdxdt=3(2t)(3t1)(1)(2t)2=63t+3t1(2t)2=5(2t)2andx+3=3t12t+3=3t1+63t2t=52tI=1325(2t)2t4(52t)9dt=158132(2t)9t4((2t)2dt=158132(2t)7t4dt=158132(t2)7t4dt=158132k=07C7ktk(2)7kt4dt=158k07(2)7kC7k132tk4dt=158{k=0andk37(2)7kC7k[1k3tk3]132+(2)4C73[ln2ln(13))I=158k=0and37(2)7kC7kk3{2k313k3}+16C73ln(6)

Leave a Reply

Your email address will not be published. Required fields are marked *