Menu Close

calculate-0-dx-x-1-2-x-2-2-x-3-2-




Question Number 87993 by abdomathmax last updated on 07/Apr/20
calculate ∫_0 ^∞    (dx/((x+1)^2 (x+2)^2 (x+3)^2 ))
calculate0dx(x+1)2(x+2)2(x+3)2
Commented by mathmax by abdo last updated on 07/Apr/20
I =∫_0 ^∞   (dx/((x+1)^2 (x+2)^2 (x+3)^2 )) ⇒I =∫_0 ^∞   (dx/((((x+1)/(x+2)))^2 (x+2)^4 (x+3)^2 ))  we use the changement ((x+1)/(x+2)) =t ⇒x+1 =tx +2t ⇒(1−t)x=2t−1  x =((2t−1)/(1−t)) ⇒(dx/dt) =((2(1−t)+(2t−1))/((1−t)^2 )) =((−3)/((t−1)^2 ))  also  x+3 =((2t−1)/(1−t)) +3 =((2t−1+3−3t)/(1−t)) =((−t+2)/(1−t)) =((t−2)/(t−1)) ⇒  x+2 =((2t−1)/(1−t))+2 =((2t−1+2−2t)/(1−t)) =(1/(1−t)) ⇒  I =∫_(1/2) ^1  ((−3dt)/((t−1)^2 t^2 ((1/(t−1)))^4 (((t−2)/(t−1)))^2 )) =−3∫_(1/2) ^1   (((t−1)^6 )/((t−1)^2 t^2 (t−2)^2 ))dt  =−3 ∫_(1/2) ^1   (((t−1)^4 )/(t^2 (t−2)^2 ))dt  we have  (1/(t^2 (t−2)^2 )) =(1/4)(((t−(t−2))^2 )/(t^2 (t−2)^2 )) =(1/4)×((t^2 −2t(t−2)+(t−2)^2 )/(t^2 (t−2)^2 ))  =(1/(4(t−2)^2 ))−(1/(2t(t−2))) +(1/(4t^2 )) =(1/(4(t−2)^2 ))−(1/4)((t−(t−2))/(t(t−2)))+(1/(4t^2 ))  =(1/(4(t−2)^2 ))−(1/(4(t−2))) +(1/(4t))+(1/(4t^2 )) ⇒  I =−(3/4)∫_(1/2) ^1  (((t−1)^4 )/((t−2)^2 ))dt +(3/4)∫_(1/2) ^1  (((t−1)^4 )/(t−2))dt−(3/4)∫_(1/2) ^1  (((t−1)^4 )/t)dt−(3/4)∫_(1/2) ^1  (((t−1)^4 )/t^2 )dt  ∫_(1/2) ^1  (((t−1)^4 )/((t−2)^2 ))dt =_(t−2 =u)    ∫_(−(3/2)) ^(−1)  (((u−3)^4 )/u^2 )du  =∫_(−(3/2)) ^(−1)  ((Σ_(k=0) ^4  C_4 ^k  u^k (−3)^(4−k) )/u^2 )du  =Σ_(k=0) ^4  (−3)^k  C_4 ^k   ∫_(−(3/2)) ^(−1) u^(k−2)  du  =Σ_(k=0and k≠1) ^4  (−3)^k  C_4 ^k   [(1/(k−1))u^(k−1) ]_(−(3/2)) ^(−1)    −3 C_4 ^1  [ln∣u∣]_(−(3/2)) ^(−1)   =Σ_(k=0 and k≠1) ^4  (−3)^k  (C_4 ^k /(k−1)){ (−1)^(k−1) −(−(3/2))^(k−1) }  −3C_4 ^1 (−ln((3/2)))  ∫_(1/2) ^1  (((t−1)^4 )/(t−2))dt =_(t−2 =u)   ∫_(−(3/2)) ^(−1)   (((u−3)^4 )/u)du  =∫_(−(3/2)) ^(−1)  ((Σ_(k=0) ^4 C_4 ^k  u^k (−3)^(4−k) )/u)du  =Σ_(k=0) ^4  (−3)^k  C_4 ^k   ∫_(−(3/2)) ^(−1)  u^(k−1)  du  =Σ_(k=1) ^4 (−3)^k  C_4 ^k [(1/k) u^k ]_(−(3/2)) ^(−1)   +C_4 ^0  [ln∣u∣]_(−(3/2)) ^(−1)   =Σ_(k=1) ^4  (−3)^k  (C_4 ^k /k){ (−1)^k −(−(3/2))^k }−ln((3/2))  we use the same method to find the other integrals...
I=0dx(x+1)2(x+2)2(x+3)2I=0dx(x+1x+2)2(x+2)4(x+3)2weusethechangementx+1x+2=tx+1=tx+2t(1t)x=2t1x=2t11tdxdt=2(1t)+(2t1)(1t)2=3(t1)2alsox+3=2t11t+3=2t1+33t1t=t+21t=t2t1x+2=2t11t+2=2t1+22t1t=11tI=1213dt(t1)2t2(1t1)4(t2t1)2=3121(t1)6(t1)2t2(t2)2dt=3121(t1)4t2(t2)2dtwehave1t2(t2)2=14(t(t2))2t2(t2)2=14×t22t(t2)+(t2)2t2(t2)2=14(t2)212t(t2)+14t2=14(t2)214t(t2)t(t2)+14t2=14(t2)214(t2)+14t+14t2I=34121(t1)4(t2)2dt+34121(t1)4t2dt34121(t1)4tdt34121(t1)4t2dt121(t1)4(t2)2dt=t2=u321(u3)4u2du=321k=04C4kuk(3)4ku2du=k=04(3)kC4k321uk2du=k=0andk14(3)kC4k[1k1uk1]3213C41[lnu]321=k=0andk14(3)kC4kk1{(1)k1(32)k1}3C41(ln(32))121(t1)4t2dt=t2=u321(u3)4udu=321k=04C4kuk(3)4kudu=k=04(3)kC4k321uk1du=k=14(3)kC4k[1kuk]321+C40[lnu]321=k=14(3)kC4kk{(1)k(32)k}ln(32)weusethesamemethodtofindtheotherintegrals

Leave a Reply

Your email address will not be published. Required fields are marked *