calculate-0-dx-x-1-2-x-2-2-x-3-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 87993 by abdomathmax last updated on 07/Apr/20 calculate∫0∞dx(x+1)2(x+2)2(x+3)2 Commented by mathmax by abdo last updated on 07/Apr/20 I=∫0∞dx(x+1)2(x+2)2(x+3)2⇒I=∫0∞dx(x+1x+2)2(x+2)4(x+3)2weusethechangementx+1x+2=t⇒x+1=tx+2t⇒(1−t)x=2t−1x=2t−11−t⇒dxdt=2(1−t)+(2t−1)(1−t)2=−3(t−1)2alsox+3=2t−11−t+3=2t−1+3−3t1−t=−t+21−t=t−2t−1⇒x+2=2t−11−t+2=2t−1+2−2t1−t=11−t⇒I=∫121−3dt(t−1)2t2(1t−1)4(t−2t−1)2=−3∫121(t−1)6(t−1)2t2(t−2)2dt=−3∫121(t−1)4t2(t−2)2dtwehave1t2(t−2)2=14(t−(t−2))2t2(t−2)2=14×t2−2t(t−2)+(t−2)2t2(t−2)2=14(t−2)2−12t(t−2)+14t2=14(t−2)2−14t−(t−2)t(t−2)+14t2=14(t−2)2−14(t−2)+14t+14t2⇒I=−34∫121(t−1)4(t−2)2dt+34∫121(t−1)4t−2dt−34∫121(t−1)4tdt−34∫121(t−1)4t2dt∫121(t−1)4(t−2)2dt=t−2=u∫−32−1(u−3)4u2du=∫−32−1∑k=04C4kuk(−3)4−ku2du=∑k=04(−3)kC4k∫−32−1uk−2du=∑k=0andk≠14(−3)kC4k[1k−1uk−1]−32−1−3C41[ln∣u∣]−32−1=∑k=0andk≠14(−3)kC4kk−1{(−1)k−1−(−32)k−1}−3C41(−ln(32))∫121(t−1)4t−2dt=t−2=u∫−32−1(u−3)4udu=∫−32−1∑k=04C4kuk(−3)4−kudu=∑k=04(−3)kC4k∫−32−1uk−1du=∑k=14(−3)kC4k[1kuk]−32−1+C40[ln∣u∣]−32−1=∑k=14(−3)kC4kk{(−1)k−(−32)k}−ln(32)weusethesamemethodtofindtheotherintegrals… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-87991Next Next post: Prove-the-inequality-cos-sin-x-gt-sin-cos-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.