Menu Close

calculate-0-dx-x-1-x-2-x-3-




Question Number 44302 by abdo.msup.com last updated on 26/Sep/18
calculate ∫_0 ^∞   (dx/((x+1)(x+2)(x+3)))
calculate0dx(x+1)(x+2)(x+3)
Commented by maxmathsup by imad last updated on 28/Sep/18
let I =∫_0 ^∞  (dx/((x+1)(x+2)(x+3))) let decompose F(x)=(1/((x+1)(x+2)(x+3)))  F(x)=(a/(x+1)) +(b/(x+2)) +(c/(x+3))  a =lim_(x→−1) (x+1)F(x)=(1/2)  b=lim_(x→−2) (x+2)F(x) = −1  c =lim_(x→−3) (x+3)F(x)=(1/2)  ⇒F(x)= (1/(2(x+1))) −(1/((x+2))) +(1/(2(x+3)))  ⇒∫_0 ^∞  F(x)dx =∫_0 ^∞  { (1/(2(x+1))) −(1/(x+2)) +(1/(2(x+3)))}dx  =[(1/2)ln∣x+1∣−ln∣x+2∣+(1/2)ln∣x+3∣]_0 ^(+∞)  =[ln(((√((x+1)(x+3)))/(x+2))]_0 ^(+∞)   −ln(((√3)/2)) =ln(2)−(1/2)ln(3) ⇒ I =ln(2)−((ln(3))/2) .
letI=0dx(x+1)(x+2)(x+3)letdecomposeF(x)=1(x+1)(x+2)(x+3)F(x)=ax+1+bx+2+cx+3a=limx1(x+1)F(x)=12b=limx2(x+2)F(x)=1c=limx3(x+3)F(x)=12F(x)=12(x+1)1(x+2)+12(x+3)0F(x)dx=0{12(x+1)1x+2+12(x+3)}dx=[12lnx+1lnx+2+12lnx+3]0+=[ln((x+1)(x+3)x+2]0+ln(32)=ln(2)12ln(3)I=ln(2)ln(3)2.
Answered by tanmay.chaudhury50@gmail.com last updated on 26/Sep/18
(1/((x+1)(x+2)(x+3)))=(a/(x+1))+(b/(x+2))+(c/(x+3))  1=a(x+2)(x+3)+b(x+1)(x+3)+c(x+1)(x+2)  put x+1=0   x=−1  1=a(−1+2)(−1+3)  a=(1/2)  x+2=0  1=b(−2+1)(−2+3)  b=−1  x+3=0  1=c(−3+1)(−3+2)  c=(1/2)  ∫_0 ^∞ ((1/2)/(x+1))dx+∫_0 ^∞ ((−1)/(x+2))dx+∫_0 ^∞ ((1/2)/(x+3))dx  {(1/2)ln∣x+1∣−ln∣x+2∣+(1/2)ln∣x+3∣}_0 ^∞   ={ln∣((√((x+1)(x+3)))/(x+2))∣}_0 ^∞   ={ln∣((x.(√((1+(1/x))(1+(3/x)))))/(x(1+(2/x))))∣}_0 ^∞   ={ln1−ln∣((√(1×3))/2)∣}  =0−{(1/2)ln3−ln2}  =ln2−(1/2)ln3
1(x+1)(x+2)(x+3)=ax+1+bx+2+cx+31=a(x+2)(x+3)+b(x+1)(x+3)+c(x+1)(x+2)putx+1=0x=11=a(1+2)(1+3)a=12x+2=01=b(2+1)(2+3)b=1x+3=01=c(3+1)(3+2)c=12012x+1dx+01x+2dx+012x+3dx{12lnx+1lnx+2+12lnx+3}0={ln(x+1)(x+3)x+2}0={lnx.(1+1x)(1+3x)x(1+2x)}0={ln1ln1×32}=0{12ln3ln2}=ln212ln3
Commented by maxmathsup by imad last updated on 28/Sep/18
your answer is correct sir Tanmay thanks...
youransweriscorrectsirTanmaythanks
Answered by ajfour last updated on 28/Sep/18
let  x+2 = z  ⇒I=∫_2 ^(  ∞) (dz/(z(z^2 −1)))          = (1/2)∫(dz/(z+1))−∫ (dz/z)+(1/2)∫(dz/(z−1))         = (1/2)ln ∣((z^2 −1)/z^2 )∣_2 ^∞         = (1/2)ln (4/3) = ln 2−(1/2)ln 3 .
letx+2=zI=2dzz(z21)=12dzz+1dzz+12dzz1=12lnz21z22=12ln43=ln212ln3.

Leave a Reply

Your email address will not be published. Required fields are marked *