calculate-0-dx-x-2-1-x-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 37961 by prof Abdo imad last updated on 19/Jun/18 calculate∫0∞dxx2+1+x2. Answered by MJS last updated on 20/Jun/18 ∫dxx2+x2+1=∫x2x4−x2−1dx−∫x2+1x4−x2−1dx=∫x2x4−x2−1dx==N1(∫dxx−221+5−∫dxx+221+5)+N2∫dxx2−12+52==10201+5ln∣x−221+5x+221+5∣+1010−1+5arctan(221+5x)∫x2+1x4−x2−1dx=[t=xx2+1→dx=(x2+1)3dt]∫dtt4+t2−1==N3(∫dtt−22−1+5−∫dtt+22−1+5)+N4∫dtt2+12+52==10201+5ln∣t−22−1+5t+22−1+5∣−1010−1+5arctan(22−1+5t)==10201+5ln∣xx2+1−22−1+5xx2+1+22−1+5∣−1010−1+5arctan(22−1+5xx2+1)=1020(1+5(ln∣x−221+5x+221+5∣−ln∣xx2+1−22−1+5xx2+1+22−1+5∣)+2−1+5(arctan(221+5x)+arctan(22−1+5xx2+1)))+C∫∞0dxx2+x2+1=1020(1+5ln(2+5+22+5)+−1+5(π+2arcsin(−1+52)))≈1.39021 Commented by math khazana by abdo last updated on 20/Jun/18 thankyousirforthishardwork. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-103497Next Next post: Question-169038 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.