Menu Close

calculate-0-dx-x-2-1-x-2-




Question Number 37961 by prof Abdo imad last updated on 19/Jun/18
calculate ∫_0 ^∞      (dx/(x^(2 )  +(√(1+x^2 )))) .
calculate0dxx2+1+x2.
Answered by MJS last updated on 20/Jun/18
∫(dx/(x^2 +(√(x^2 +1))))=∫(x^2 /(x^4 −x^2 −1))dx−∫((√(x^2 +1))/(x^4 −x^2 −1))dx=         ∫(x^2 /(x^4 −x^2 −1))dx=       =N_1 (∫(dx/(x−((√2)/2)(√(1+(√5)))))−∫(dx/(x+((√2)/2)(√(1+(√5))))))+N_2 ∫(dx/(x^2 −(1/2)+((√5)/2)))=       =((√(10))/(20))(√(1+(√5)))ln∣((x−((√2)/2)(√(1+(√5))))/(x+((√2)/2)(√(1+(√5)))))∣+((√(10))/(10))(√(−1+(√5)))arctan(((√2)/2)(√(1+(√5)))x)         ∫((√(x^2 +1))/(x^4 −x^2 −1))dx=            [t=(x/( (√(x^2 +1)))) → dx=(√((x^2 +1)^3 ))dt]       ∫(dt/(t^4 +t^2 −1))=       =N_3 (∫(dt/(t−((√2)/2)(√(−1+(√5)))))−∫(dt/(t+((√2)/2)(√(−1+(√5))))))+N_4 ∫(dt/(t^2 +(1/2)+((√5)/2)))=       =((√(10))/(20))(√(1+(√5)))ln∣((t−((√2)/2)(√(−1+(√5))))/(t+((√2)/2)(√(−1+(√5)))))∣−((√(10))/(10))(√(−1+(√5)))arctan(((√2)/2)(√(−1+(√5)))t)=       =((√(10))/(20))(√(1+(√5)))ln∣(((x/( (√(x^2 +1))))−((√2)/2)(√(−1+(√5))))/((x/( (√(x^2 +1))))+((√2)/2)(√(−1+(√5)))))∣−((√(10))/(10))(√(−1+(√5)))arctan(((√2)/2)(√(−1+(√5)))(x/( (√(x^2 +1)))))    =((√(10))/(20))((√(1+(√5)))(ln∣((x−((√2)/2)(√(1+(√5))))/(x+((√2)/2)(√(1+(√5)))))∣−ln∣(((x/( (√(x^2 +1))))−((√2)/2)(√(−1+(√5))))/((x/( (√(x^2 +1))))+((√2)/2)(√(−1+(√5)))))∣)+2(√(−1+(√5)))(arctan(((√2)/2)(√(1+(√5)))x)+arctan(((√2)/2)(√(−1+(√5)))(x/( (√(x^2 +1)))))))+C    ∫_0 ^∞ (dx/(x^2 +(√(x^2 +1))))=((√(10))/(20))((√(1+(√5)))ln(2+(√5)+2(√(2+(√5))))+(√(−1+(√5)))(π+2arcsin(((−1+(√5))/2))))≈1.39021
dxx2+x2+1=x2x4x21dxx2+1x4x21dx=x2x4x21dx==N1(dxx221+5dxx+221+5)+N2dxx212+52==10201+5lnx221+5x+221+5+10101+5arctan(221+5x)x2+1x4x21dx=[t=xx2+1dx=(x2+1)3dt]dtt4+t21==N3(dtt221+5dtt+221+5)+N4dtt2+12+52==10201+5lnt221+5t+221+510101+5arctan(221+5t)==10201+5lnxx2+1221+5xx2+1+221+510101+5arctan(221+5xx2+1)=1020(1+5(lnx221+5x+221+5lnxx2+1221+5xx2+1+221+5)+21+5(arctan(221+5x)+arctan(221+5xx2+1)))+C0dxx2+x2+1=1020(1+5ln(2+5+22+5)+1+5(π+2arcsin(1+52)))1.39021
Commented by math khazana by abdo last updated on 20/Jun/18
thank you sir for this hard work.
thankyousirforthishardwork.

Leave a Reply

Your email address will not be published. Required fields are marked *