Menu Close

calculate-0-dx-x-2-3-2-x-2-4-2-




Question Number 146835 by mathmax by abdo last updated on 16/Jul/21
calculate ∫_0 ^∞   (dx/((x^2  +3)^2 (x^2  +4)^2 ))
calculate0dx(x2+3)2(x2+4)2
Answered by mathmax by abdo last updated on 16/Jul/21
Ψ=(1/2)∫_(−∞) ^(+∞)  (dx/((x^2 +3)^2 (x^2  +4)^2 )) let ϕ(z)=(1/((z^2 +3)^2 (z^2  +4)^2 ))  ⇒ϕ(z)=(1/((z−i(√3))^2 (z+i(√3))^2 (z−2i)^2 (z+2i)^2 ))  the poles of ϕ are +^− i(√3) and +^− 2i(doubles)  residus ⇒∫_(−∞) ^(+∞)  ϕ(z)dz=2iπ{Res(ϕ,i(√3))+Res(ϕ,2i)}  Res(ϕ,i(√3))=lim_(z→i(√3))   (1/((2−1)!)){(z−i(√3))^2 ϕ(z)}^((1))   =lim_(z→i(√3)) {(1/((z+i(√3))^2 (z^2  +4)^2 ))}  =−lim_(z→i(√3))    ((2(z+i(√3))(z^2  +4)^2  +4z(z^2  +4)(z+i(√3))^2 )/((z+i(√3))^4 (z^2  +4)^4 ))  =−lim_(z→i(√3))     ((2(z^2  +4)+4z(z+i(√3)))/((z+i(√3))^3 (z^2  +4)^3 ))  =−((2(−3+4)+4i(√3)(2i(√3)))/((2i(√3))^3 (−3+4)^3 ))=−((2−24)/(−8i(3(√3))))=−((22)/(24(√3)i))=−((11)/(12(√3)i))  Res(ϕ,2i)=lim_(z→2i)   (1/((2−1)!)){(z−2i)^2 ϕ(z)}^((1))   =lim_(z→2i)     {(1/((z^2  +3)^2 (z+2i)^2 ))}^((1))   =−lim_(z→2i)     ((4z(z^2  +3)(z+2i)^2  +2(z+2i)(z^2  +3)^2 )/((z^2  +3)^4 (z+2i)^4 ))  =−lim_(z→2i)     ((4z(z+2i)+2(z^2  +3))/((z^2  +3)^3 (z+2i)^3 ))  =−(((8i)(4i)+2(−4+3))/((−4+3)^3 (4i)^3 ))=−((−32−2)/((−1)(−48i)))=−((−34)/(48i))=((34)/(48i)) ⇒  ⇒∫_(−∞) ^(+∞)  ϕ(z)dz=2iπ{−((11)/(12(√3)i))+((17)/(24i))}  =−((11π)/(6(√3))) +((17π)/(12)) =(((17)/(12))−((11)/(6(√3))))π ⇒Ψ=(π/2)(((17)/(12))−((11)/(6(√3))))
Ψ=12+dx(x2+3)2(x2+4)2letφ(z)=1(z2+3)2(z2+4)2φ(z)=1(zi3)2(z+i3)2(z2i)2(z+2i)2thepolesofφare+i3and+2i(doubles)residus+φ(z)dz=2iπ{Res(φ,i3)+Res(φ,2i)}Res(φ,i3)=limzi31(21)!{(zi3)2φ(z)}(1)=limzi3{1(z+i3)2(z2+4)2}=limzi32(z+i3)(z2+4)2+4z(z2+4)(z+i3)2(z+i3)4(z2+4)4=limzi32(z2+4)+4z(z+i3)(z+i3)3(z2+4)3=2(3+4)+4i3(2i3)(2i3)3(3+4)3=2248i(33)=22243i=11123iRes(φ,2i)=limz2i1(21)!{(z2i)2φ(z)}(1)=limz2i{1(z2+3)2(z+2i)2}(1)=limz2i4z(z2+3)(z+2i)2+2(z+2i)(z2+3)2(z2+3)4(z+2i)4=limz2i4z(z+2i)+2(z2+3)(z2+3)3(z+2i)3=(8i)(4i)+2(4+3)(4+3)3(4i)3=322(1)(48i)=3448i=3448i+φ(z)dz=2iπ{11123i+1724i}=11π63+17π12=(17121163)πΨ=π2(17121163)
Answered by Olaf_Thorendsen last updated on 16/Jul/21
f(a,b) = ∫_0 ^∞ (dx/((x^2 +a^2 )(x^2 +b^2 )))   (1)  f(a,b) = (1/(b^2 −a^2 ))∫_0 ^∞ ((1/(x^2 +a^2 ))−(1/(x^2 +b^2 ))) dx  f(a,b) = (1/(b^2 −a^2 ))[(1/a)arctan(x/a)−(1/b)arctan(x/b)]_0 ^∞   f(a,b) = (1/(b^2 −a^2 )).(π/2)((1/a)−(1/b))  f(a,b) = (π/(2ab(a+b)))   (2)  (1)  : ((∂f(a,b))/∂a) = −2a∫_0 ^∞ (dx/((x^2 +a^2 )^2 (x^2 +b^2 )))   ((∂^2 f(a,b))/(∂a∂b)) = 4ab∫_0 ^∞ (dx/((x^2 +a^2 )^2 (x^2 +b^2 )^2 ))  ((∂^2 f(a,b))/(∂a∂b)) = 4abf(a,b)   (3)     (2) : ((∂f(a,b))/∂a) = −((π(2a+b))/(2a^2 b(a+b)^2 ))  ((∂f^2 (a,b))/(∂a∂b)) = (π/(a^2 b^2 ))[((a^3 +4a^2 b+4ab^2 +b^3 )/((a+b)^4 ))]  (4)  (3) and (4) :  f(a,b) = (π/(4a^3 b^3 ))[((a^3 +4a^2 b+4ab^2 +b^3 )/((a+b)^4 ))]  Ω = ∫_0 ^∞ (dx/((x^2 +3)(x^2 +4)))  = f((√3),2)  ⇒ Ω = (π/( 96(√3)))[((19(√3)+32)/(((√3)+2)^4 ))]  Ω = (π/( 96(√3)))(((32+19(√3))/(97+56(√3))))  Ω = (π/( 96(√3)))(51(√3)−88)  Ω = (π/4)(((17)/8)−((11(√3))/9))
f(a,b)=0dx(x2+a2)(x2+b2)(1)f(a,b)=1b2a20(1x2+a21x2+b2)dxf(a,b)=1b2a2[1aarctanxa1barctanxb]0f(a,b)=1b2a2.π2(1a1b)f(a,b)=π2ab(a+b)(2)(1):f(a,b)a=2a0dx(x2+a2)2(x2+b2)2f(a,b)ab=4ab0dx(x2+a2)2(x2+b2)22f(a,b)ab=4abf(a,b)(3)(2):f(a,b)a=π(2a+b)2a2b(a+b)2f2(a,b)ab=πa2b2[a3+4a2b+4ab2+b3(a+b)4](4)(3)and(4):f(a,b)=π4a3b3[a3+4a2b+4ab2+b3(a+b)4]Ω=0dx(x2+3)(x2+4)=f(3,2)Ω=π963[193+32(3+2)4]Ω=π963(32+19397+563)Ω=π963(51388)Ω=π4(1781139)

Leave a Reply

Your email address will not be published. Required fields are marked *