Menu Close

calculate-0-dx-x-4-1-2-




Question Number 126493 by mathmax by abdo last updated on 21/Dec/20
calculate  ∫_0 ^∞   (dx/((x^4 +1)^2 ))
calculate0dx(x4+1)2
Answered by Dwaipayan Shikari last updated on 21/Dec/20
∫_0 ^∞ (dx/((x^4 +1)^2 ))     x^4 =t⇒4x^3 =(dt/dx)  =(1/4)∫_0 ^∞ (t^(−(3/4)) /((t+1)^2 ))dt                     (t/(t+1))=u  =(1/4)∫_0 ^1 ((u/(1−u)))^(−(3/4)) du  = (1/4)β((1/4),(7/4))=((3Γ((1/4))Γ((3/4)))/(16))=((3π)/(8(√2)))
0dx(x4+1)2x4=t4x3=dtdx=140t34(t+1)2dttt+1=u=1401(u1u)34du=14β(14,74)=3Γ(14)Γ(34)16=3π82
Answered by mathmax by abdo last updated on 21/Dec/20
let f(a) =∫_0 ^∞  (dx/(x^4 +a^4 ))  with a>0 ⇒f^′ (a)=−∫_0 ^∞  ((4a^3 )/((x^4  +a^4 )^2 ))dx ⇒  f^′ (1)=−4∫_0 ^∞  (dx/((x^4 +1)^2 )) ⇒∫_0 ^∞  (dx/((x^4 +1)^2 ))=−(1/4)f^′ (1) let explicit f(a)  f(a) =_(x=at)    ∫_0 ^∞   ((adt)/(a^4 (t^4 +1))) =(1/a^3 )∫_0 ^∞   (dt/(1+t^4 ))  =_(t=z^(1/4) )   =(1/(4a^3 ))∫_0 ^∞   (1/(1+z))z^((1/4)−1) dz =(1/(4a^3 ))×(π/(sin((π/4)))) =(π/(4a^3 ×((√2)/2)))=(π/(2(√2)a^3 )) ⇒  f(a)=(π/(2(√2)))a^(−3)  ⇒f^′ (a) =(π/(2(√2)))(−3)a^(−4)  ⇒f^′ (1)=((−3π)/(2(√2))) ⇒  ∫_0 ^∞    (dx/((x^4 +1)^2 )) =−(1/4)×((−3π)/(2(√2))) =((3π)/(8(√2))) =((3π(√2))/(16))
letf(a)=0dxx4+a4witha>0f(a)=04a3(x4+a4)2dxf(1)=40dx(x4+1)20dx(x4+1)2=14f(1)letexplicitf(a)f(a)=x=at0adta4(t4+1)=1a30dt1+t4=t=z14=14a3011+zz141dz=14a3×πsin(π4)=π4a3×22=π22a3f(a)=π22a3f(a)=π22(3)a4f(1)=3π220dx(x4+1)2=14×3π22=3π82=3π216

Leave a Reply

Your email address will not be published. Required fields are marked *