calculate-0-dx-x-4-x-2-1-1-by-using-residue-theorem-2-by-using-complex-decomposition- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 98721 by mathmax by abdo last updated on 15/Jun/20 calculate∫0∞dxx4+x2+11)byusingresiduetheorem2)byusingcomplexdecomposition Answered by mathmax by abdo last updated on 16/Jun/20 letI=∫0∞dxx4+x2+1⇒2I=∫−∞+∞dxx4+x2+1letφ(z)=1z4+z2+1polesofφ?z4+z2+1=0⇒u2+u+1=0(u=z2)Δ=−3⇒u1=−1+i32=ei2π3,u2=−1−i32=e−i2π3⇒φ(z)=1(z2−ei2π3)(z2−e−i2π3)=1(z−eiπ3)(z+eiπ3)(z−e−iπ3)(z+e−iπ3)∫−∞+∞φ(z)dz=2iπ{Res(φ,eiπ3)+Res(φ,−e−iπ3)}Res(φ,eiπ3)=12eiπ3(2isin(2π3))=e−iπ34i(32)=e−iπ32i3Res(φ,−e−iπ3)=1−2e−iπ3(−2isin(2π3))=eiπ34i(32)=eiπ32i3⇒∫−∞+∞φ(z)dz=2iπ{e−iπ32i3+eiπ32i3}=π3(2cos(π3))=π3(2×12)=π3⇒I=π23 Answered by mathmax by abdo last updated on 16/Jun/20 2)letusecomplexdecompositon2I=∫−∞+∞dxx4+x2+1x4+x2+1=0⇒t2+t+1=0(t=x2)Δ=−3⇒t1=−1+i32=ei2π3andt2=−1−i32=e−i2π3⇒F(x)=1x4+x2+1=1(x2−ei2π3)(x2−e−i2π3)=1(x−eiπ3)(x+eiπ3)(x−e−iπ3)(x+e−iπ3)=ax−eiπ3+bx+eiπ3+cx−e−iπ3+dx+e−iπ3a=12eiπ3(2isin(2π3))=e−iπ32i3,b=1−2eiπ3(2isin(2π3))=−e−iπ32i3c=12e−iπ3(−2isin(2π3))=−eiπ32i3,d=1−2e−iπ3(−2isin(2π3))=eiπ32i3⇒∫−∞+∞F(x)dx=12i3{e−iπ3∫−∞+∞dxx−eiπ3−e−iπ3∫−∞+∞dxx+eiπ3−eiπ3∫−∞+∞dxx−e−iπ3+eiπ3∫−∞+∞dxx+e−iπ3}wehaveprovedthst∫−∞+∞dxx−a=iπifim(a)>0and−iπifIm(a)<0⇒∫−∞+∞F(x)dx=12i3{(iπ)e−iπ3−(−iπ)e−iπ3−(−iπ)eiπ3+(iπ)eiπ3}=π23{e−iπ3+e−iπ3+eiπ3+eiπ3}=π3{eiπ3+e−iπ3}=π3{2cos(π3))=π3=2I⇒I=π23 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-0-1-dt-1-t-2-2-Next Next post: find-k-if-n-1-2k-2-n-1-64-hence-find-k-if-kx-2-3x-4-0-has-real-roots- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.