Menu Close

calculate-0-dx-x-4-x-2-1-1-by-using-residue-theorem-2-by-using-complex-decomposition-




Question Number 98721 by mathmax by abdo last updated on 15/Jun/20
calculate ∫_0 ^∞    (dx/(x^4 +x^2  +1))  1) by using residue theorem  2) by using complex decomposition
calculate0dxx4+x2+11)byusingresiduetheorem2)byusingcomplexdecomposition
Answered by mathmax by abdo last updated on 16/Jun/20
let I =∫_0 ^∞  (dx/(x^4  +x^2  +1)) ⇒2I =∫_(−∞) ^(+∞)  (dx/(x^4  +x^2  +1)) let ϕ(z) =(1/(z^4  +z^2  +1)) poles of ϕ?  z^4  +z^2 +1 =0 ⇒u^2  +u+1 =0 (u=z^2 )  Δ =−3 ⇒u_1 =((−1+i(√3))/2) =e^(i((2π)/3))    ,  u_2 =((−1−i(√3))/2) =e^(−((i2π)/3))  ⇒  ϕ(z) =(1/((z^2 −e^((i2π)/3) )(z^2 −e^(−((i2π)/3)) ))) =(1/((z−e^((iπ)/3) )(z+e^((iπ)/3) )(z−e^(−((iπ)/3)) )(z+e^(−((iπ)/3)) )))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,e^((iπ)/3) ) +Res(ϕ,−e^(−((iπ)/3)) )}  Res(ϕ,e^((iπ)/3) ) =(1/(2e^((iπ)/3) (2isin(((2π)/3))))) =(e^(−((iπ)/3)) /(4i (((√3)/2)))) =(e^(−((iπ)/3)) /(2i(√3)))  Res(ϕ,−e^(−((iπ)/3)) ) =(1/(−2e^(−((iπ)/3)) (−2isin(((2π)/3))))) =(e^((iπ)/3) /(4i(((√3)/2)))) =(e^((iπ)/3) /(2i(√3))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{(e^(−((iπ)/3)) /(2i(√3))) +(e^((iπ)/3) /(2i(√3)))} =(π/( (√3)))(2cos((π/3))) =(π/( (√3)))(2×(1/2)) =(π/( (√3)))  ⇒I =(π/(2(√3)))
letI=0dxx4+x2+12I=+dxx4+x2+1letφ(z)=1z4+z2+1polesofφ?z4+z2+1=0u2+u+1=0(u=z2)Δ=3u1=1+i32=ei2π3,u2=1i32=ei2π3φ(z)=1(z2ei2π3)(z2ei2π3)=1(zeiπ3)(z+eiπ3)(zeiπ3)(z+eiπ3)+φ(z)dz=2iπ{Res(φ,eiπ3)+Res(φ,eiπ3)}Res(φ,eiπ3)=12eiπ3(2isin(2π3))=eiπ34i(32)=eiπ32i3Res(φ,eiπ3)=12eiπ3(2isin(2π3))=eiπ34i(32)=eiπ32i3+φ(z)dz=2iπ{eiπ32i3+eiπ32i3}=π3(2cos(π3))=π3(2×12)=π3I=π23
Answered by mathmax by abdo last updated on 16/Jun/20
2) let use complex decompositon  2I =∫_(−∞) ^(+∞)  (dx/(x^4  +x^2  +1))  x^4  +x^2  +1 =0 ⇒t^2  +t +1 =0  (t=x^2 )  Δ =−3 ⇒t_1 =((−1+i(√3))/2) =e^((i2π)/3)   and  t_2 =((−1−i(√3))/2) =e^(−((i2π)/3))   ⇒F(x) =(1/(x^4  +x^2  +1)) =(1/((x^2 −e^((i2π)/3) )(x^2 −e^(−((i2π)/3)) ))) =(1/((x−e^((iπ)/3) )(x+e^((iπ)/3) )(x−e^(−((iπ)/3)) )(x+e^(−((iπ)/3)) )))  =(a/(x−e^((iπ)/3) )) +(b/(x+e^((iπ)/3) )) +(c/(x−e^(−((iπ)/3)) )) +(d/(x+e^(−((iπ)/3)) ))  a =(1/(2e^((iπ)/3) (2isin(((2π)/3))))) =(e^(−((iπ)/3)) /(2i(√3)))  ,  b =(1/(−2e^((iπ)/3) (2isin(((2π)/3))))) =−(e^(−((iπ)/3)) /(2i(√3)))  c =(1/(2e^(−((iπ)/3)) (−2isin(((2π)/3))))) =−(e^((iπ)/3) /(2i(√3)))  ,  d =(1/(−2e^(−((iπ)/3)) (−2isin(((2π)/3))))) =(e^((iπ)/3) /(2i(√3)))  ⇒∫_(−∞) ^(+∞)  F(x)dx =(1/(2i(√3))){ e^(−((iπ)/3))  ∫_(−∞) ^(+∞)  (dx/(x−e^((iπ)/3) )) −e^(−((iπ)/3))  ∫_(−∞) ^(+∞)  (dx/(x+e^((iπ)/3) ))−e^((iπ)/3)  ∫_(−∞) ^(+∞)  (dx/(x−e^(−((iπ)/3)) ))  +e^((iπ)/3)  ∫_(−∞) ^(+∞)  (dx/(x+e^(−((iπ)/3)) ))}  we have proved thst ∫_(−∞) ^(+∞)  (dx/(x−a)) =iπ if im(a)>0 and  −iπ if Im(a)<0 ⇒  ∫_(−∞) ^(+∞)  F(x)dx =(1/(2i(√3))){(iπ)e^(−((iπ)/3))   −(−iπ)e^(−((iπ)/3))  −(−iπ)e^((iπ)/3)  +(iπ)e^((iπ)/3) }  =(π/(2(√3))){ e^(−((iπ)/3))  +e^(−((iπ)/3))  +e^((iπ)/3)  +e^((iπ)/3) } =(π/( (√3))){e^((iπ)/3)  +e^(−((iπ)/3)) } =(π/( (√3))){2cos((π/3)))  =(π/( (√3))) =2I ⇒ I =(π/(2(√3)))
2)letusecomplexdecompositon2I=+dxx4+x2+1x4+x2+1=0t2+t+1=0(t=x2)Δ=3t1=1+i32=ei2π3andt2=1i32=ei2π3F(x)=1x4+x2+1=1(x2ei2π3)(x2ei2π3)=1(xeiπ3)(x+eiπ3)(xeiπ3)(x+eiπ3)=axeiπ3+bx+eiπ3+cxeiπ3+dx+eiπ3a=12eiπ3(2isin(2π3))=eiπ32i3,b=12eiπ3(2isin(2π3))=eiπ32i3c=12eiπ3(2isin(2π3))=eiπ32i3,d=12eiπ3(2isin(2π3))=eiπ32i3+F(x)dx=12i3{eiπ3+dxxeiπ3eiπ3+dxx+eiπ3eiπ3+dxxeiπ3+eiπ3+dxx+eiπ3}wehaveprovedthst+dxxa=iπifim(a)>0andiπifIm(a)<0+F(x)dx=12i3{(iπ)eiπ3(iπ)eiπ3(iπ)eiπ3+(iπ)eiπ3}=π23{eiπ3+eiπ3+eiπ3+eiπ3}=π3{eiπ3+eiπ3}=π3{2cos(π3))=π3=2II=π23

Leave a Reply

Your email address will not be published. Required fields are marked *