calculate-0-dx-x-4-x-2-1-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 83253 by mathmax by abdo last updated on 29/Feb/20 calculate∫0∞dx(x4−x2+1)2 Commented by abdomathmax last updated on 01/Mar/20 sorrytheQiscalculate∫−∞+∞dx(x4−x2+1)2 Commented by mathmax by abdo last updated on 01/Mar/20 letI=∫−∞+∞dx(x4−x2+1)2letφ(z)=1(z4−z2+1)2polesofφ?z4−z2+1=0⇒t2−t+1=0(t=z2)Δ=1−4=−3⇒t1=1+i32=eiπ3andt2=1−i32=e−iπ3t2−t+1=(t−eiπ3)(t−e−iπ3)⇒z4−z2+1=(z2−eiπ3)(z2−e−iπ3)=(z−eiπ6)(z+eiπ6)(z−e−iπ6)(z+e−iπ6)⇒φ(z)=1(z−eiπ6)2(z+eiπ6)2(z−e−iπ6)2(z+e−iπ6)2residustheoremgive∫−∞+∞φ(z)dz=2iπ{Res(φ,eiπ6)+Res(φ,−e−iπ6)}Res(φ,eiπ6)=limz→eiπ61(2−1)!{(z−eiπ6)2φ(z)}(1)=limz→eiπ6{1(z+eiπ6)(z2−e−iπ3)2}(1)=limz→eiπ6−(z2−e−iπ3)2+(z+eiπ6)×(4z)(z2−e−iπ3)(z+eiπ6)2(z2−e−iπ3)4=−limz→eiπ6(z2−e−iπ3)+4z(z+eiπ6)(z+eiπ6)2(z2−e−iπ3)3=−eiπ3−e−iπ3+4eiπ6×2eiπ6(2eiπ6)2(eiπ3−e−iπ3)3=−2isin(π3)+8eiπ32eiπ3(2i)3sin3(π3)=−isin(π3)+4eiπ3−8ieiπ3sin3(π3)=e−iπ3×sin(π3)−4ieiπ3sin3(π3)=sin(π3)e−iπ3−4i8(32)3=32e−iπ3−4i33….becontinued… Commented by mathmax by abdo last updated on 01/Mar/20 pareametricmethodletφ(a)=∫0∞dxx4−x2+awitha>14wehaveφ′(a)=−∫0∞dx(x4−x2+a)2⇒∫0∞dx(x4−x2+a)2=−φ′(a)wehave2φ(a)=∫−∞+∞dxx4−x2+aletW(z)=1z4−z2+apolesofW?z4−z2+a=0⇒t2−t+a=0(t=z2)Δ=1−4a<0⇒Δ=(i4a−1)2⇒z1=1+i4a−12z2=1−i4a−12⇒W(z)=1(z2−z1)(z2−z2)=1(z−z1)(z+z1)(z−z2)(z+z2)∫−∞+∞W(z)dz=2iπ{Res(W,z1)+Res(W,−z2)}Res(W,z1)=12z1(z12−z2)Res(W,−z2)=1−2z2(z22−z1)=−12z2(z22−z1)⇒∫−∞+∞W(z)dz=iπ{1z1(z12−z2)−1z2(z22−z1)}∣z1∣=121+4a−1=a⇒z1=aeiarctan4a−1z2=ae−iarctan(4a−1)⇒z1=4aei2arctan(4a−1)z12−z2=ae2iarctan(4a−1)−ae−iarctan(4a−1)⇒∫−∞+∞W(z)dz=iπ{1(4a)eiarctan(4a−1)(ae2iarctan(4a−1)−ae−iarctan(4a−1)−1(4a)e−iarctan(4a−1)(ae−2iarctan(4a−1)−aeiarctan(4a−1))}…becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-decompose-F-x-x-2-3-2x-3-5x-7-2-determine-F-x-dx-Next Next post: calculate-0-pi-2-dx-cos-2-x-3-sin-2-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.