Menu Close

calculate-0-dx-x-4-x-2-1-2-




Question Number 83253 by mathmax by abdo last updated on 29/Feb/20
calculate ∫_0 ^∞  (dx/((x^4 −x^2  +1)^2 ))
calculate0dx(x4x2+1)2
Commented by abdomathmax last updated on 01/Mar/20
sorry the Q is calculate ∫_(−∞) ^(+∞)  (dx/((x^4 −x^2  +1)^2 ))
sorrytheQiscalculate+dx(x4x2+1)2
Commented by mathmax by abdo last updated on 01/Mar/20
let I =∫_(−∞) ^(+∞)  (dx/((x^4 −x^2  +1)^2 )) let ϕ(z)=(1/((z^4 −z^2 +1)^2 )) poles of ϕ?  z^4 −z^2  +1=0⇒t^2 −t+1=0   (t=z^2 )  Δ=1−4=−3 ⇒t_1 =((1+i(√3))/2) =e^((iπ)/3)  and t_2 =((1−i(√3))/2)=e^(−((iπ)/3))   t^2 −t+1 =(t−e^((iπ)/3) )(t−e^(−((iπ)/3)) ) ⇒z^4 −z^2   +1 =(z^2 −e^((iπ)/3) )(z^2 −e^((−iπ)/3) )  =(z−e^((iπ)/6) )(z+e^((iπ)/6) )(z−e^(−((iπ)/6)) )(z+e^((−iπ)/6) )⇒  ϕ(z)=(1/((z−e^((iπ)/6) )^2 (z+e^((iπ)/6) )^2 (z−e^(−((iπ)/6)) )^2 (z+e^(−((iπ)/6)) )^2 ))  residus theorem give ∫_(−∞) ^(+∞)  ϕ(z)dz=2iπ{Res(ϕ,e^((iπ)/6) )+Res(ϕ,−e^(−((iπ)/6)) )}  Res(ϕ,e^((iπ)/6) )=lim_(z→e^((iπ)/6) )    (1/((2−1)!)){(z−e^((iπ)/6) )^2 ϕ(z)}^((1))   =lim_(z→e^((iπ)/6) )    {(1/((z+e^((iπ)/6) )(z^2 −e^(−((iπ)/3)) )^2 ))}^((1))   =lim_(z→e^((iπ)/6) )   −(((z^2 −e^(−((iπ)/3)) )^2 +(z+e^((iπ)/6) )×(4z)(z^2 −e^(−((iπ)/3)) ))/((z+e^((iπ)/6) )^2 (z^2 −e^(−((iπ)/3)) )^4 ))  =−lim_(z→e^((iπ)/6) )     (((z^2 −e^(−((iπ)/3)) )+4z(z+e^((iπ)/6) ))/((z+e^((iπ)/6) )^2 (z^2 −e^(−((iπ)/3)) )^3 ))  =−((e^((iπ)/3) −e^(−((iπ)/3)) +4e^((iπ)/6) ×2e^((iπ)/6) )/((2e^((iπ)/6) )^2 (e^((iπ)/3) −e^(−((iπ)/3)) )^3 )) =−((2isin((π/3))+8 e^((iπ)/3) )/(2e^((iπ)/3) (2i)^3 sin^3 ((π/3))))  =−((isin((π/3))+4e^((iπ)/3) )/(−8i e^((iπ)/3)  sin^3 ((π/3)))) =e^(−((iπ)/3)) ×((sin((π/3))−4ie^((iπ)/3) )/(sin^3 ((π/3))))  =((sin((π/3))e^(−((iπ)/3))  −4i)/(8(((√3)/2))^3 )) =((((√3)/2)e^(−((iπ)/3)) −4i)/(3(√3)))  ....be continued...
letI=+dx(x4x2+1)2letφ(z)=1(z4z2+1)2polesofφ?z4z2+1=0t2t+1=0(t=z2)Δ=14=3t1=1+i32=eiπ3andt2=1i32=eiπ3t2t+1=(teiπ3)(teiπ3)z4z2+1=(z2eiπ3)(z2eiπ3)=(zeiπ6)(z+eiπ6)(zeiπ6)(z+eiπ6)φ(z)=1(zeiπ6)2(z+eiπ6)2(zeiπ6)2(z+eiπ6)2residustheoremgive+φ(z)dz=2iπ{Res(φ,eiπ6)+Res(φ,eiπ6)}Res(φ,eiπ6)=limzeiπ61(21)!{(zeiπ6)2φ(z)}(1)=limzeiπ6{1(z+eiπ6)(z2eiπ3)2}(1)=limzeiπ6(z2eiπ3)2+(z+eiπ6)×(4z)(z2eiπ3)(z+eiπ6)2(z2eiπ3)4=limzeiπ6(z2eiπ3)+4z(z+eiπ6)(z+eiπ6)2(z2eiπ3)3=eiπ3eiπ3+4eiπ6×2eiπ6(2eiπ6)2(eiπ3eiπ3)3=2isin(π3)+8eiπ32eiπ3(2i)3sin3(π3)=isin(π3)+4eiπ38ieiπ3sin3(π3)=eiπ3×sin(π3)4ieiπ3sin3(π3)=sin(π3)eiπ34i8(32)3=32eiπ34i33.becontinued
Commented by mathmax by abdo last updated on 01/Mar/20
pareametric method let ϕ(a) =∫_0 ^∞   (dx/(x^4 −x^2  +a))  witha>(1/4)  we have ϕ^′ (a) =−∫_0 ^∞   (dx/((x^4 −x^2  +a)^2 )) ⇒∫_0 ^∞  (dx/((x^4 −x^2  +a)^2 ))=−ϕ^′ (a)  we have 2ϕ(a) =∫_(−∞) ^(+∞)  (dx/(x^4 −x^2  +a)) let W(z)=(1/(z^4 −z^2  +a))  poles of W?  z^4 −z^2  +a =0 ⇒t^2 −t +a =0  (t=z^2 )  Δ=1−4a<0 ⇒Δ=(i(√(4a−1)))^2  ⇒z_1 =((1+i(√(4a−1)))/2)  z_2 =((1−i(√(4a−1)))/2) ⇒W(z) =(1/((z^2 −z_1 )(z^2 −z_2 ))) =(1/((z−(√z_1 ))(z+(√z_1 ))(z−(√z_2 ))(z+(√z_2 ))))  ∫_(−∞) ^(+∞)  W(z)dz =2iπ {Res(W,(√z_1 )) +Res(W,−(√z_2 ))}  Res(W,(√z_1 )) =(1/(2(√z_1 )(z_1 ^2 −z_2 )))  Res(W,−(√z_2 )) =(1/(−2(√z_2 )(z_2 ^2  −z_1 ))) =−(1/(2(√z_2 )(z_2 ^2 −z_1 ))) ⇒  ∫_(−∞) ^(+∞)  W(z)dz =iπ{ (1/( (√z_1 )(z_1 ^2 −z_2 )))−(1/( (√z_2 )(z_2 ^2 −z_1 )))}  ∣z_1 ∣=(1/2)(√(1+4a−1))=(√a) ⇒z_1 =(√a)e^(iarctan(√(4a−1)))   z_2 =(√a)e^(−iarctan((√(4a−1))))  ⇒(√z_1 )=^4 (√a)e^((i/2)arctan((√(4a−1))))   z_1 ^2 −z_2 =a e^(2iarctan((√(4a−1)))) −(√a)e^(−iarctan((√(4a−1))))  ⇒  ∫_(−∞) ^(+∞)  W(z)dz =iπ{ (1/((^4 (√a))e^(iarctan((√(4a−1)))) (a e^(2iarctan((√(4a−1)))) −(√a)e^(−iarctan((√(4a−1)))) ))−(1/((^4 (√a))e^(−iarctan((√(4a−1)))) (ae^(−2iarctan((√(4a−1)))) −(√a)e^(iarctan((√(4a−1)))) )))}  ...be continued...
pareametricmethodletφ(a)=0dxx4x2+awitha>14wehaveφ(a)=0dx(x4x2+a)20dx(x4x2+a)2=φ(a)wehave2φ(a)=+dxx4x2+aletW(z)=1z4z2+apolesofW?z4z2+a=0t2t+a=0(t=z2)Δ=14a<0Δ=(i4a1)2z1=1+i4a12z2=1i4a12W(z)=1(z2z1)(z2z2)=1(zz1)(z+z1)(zz2)(z+z2)+W(z)dz=2iπ{Res(W,z1)+Res(W,z2)}Res(W,z1)=12z1(z12z2)Res(W,z2)=12z2(z22z1)=12z2(z22z1)+W(z)dz=iπ{1z1(z12z2)1z2(z22z1)}z1∣=121+4a1=az1=aeiarctan4a1z2=aeiarctan(4a1)z1=4aei2arctan(4a1)z12z2=ae2iarctan(4a1)aeiarctan(4a1)+W(z)dz=iπ{1(4a)eiarctan(4a1)(ae2iarctan(4a1)aeiarctan(4a1)1(4a)eiarctan(4a1)(ae2iarctan(4a1)aeiarctan(4a1))}becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *