Question Number 83253 by mathmax by abdo last updated on 29/Feb/20
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\left({x}^{\mathrm{4}} −{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Commented by abdomathmax last updated on 01/Mar/20
$${sorry}\:{the}\:{Q}\:{is}\:{calculate}\:\int_{−\infty} ^{+\infty} \:\frac{{dx}}{\left({x}^{\mathrm{4}} −{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Commented by mathmax by abdo last updated on 01/Mar/20
$${let}\:{I}\:=\int_{−\infty} ^{+\infty} \:\frac{{dx}}{\left({x}^{\mathrm{4}} −{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:{let}\:\varphi\left({z}\right)=\frac{\mathrm{1}}{\left({z}^{\mathrm{4}} −{z}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\:{poles}\:{of}\:\varphi? \\ $$$${z}^{\mathrm{4}} −{z}^{\mathrm{2}} \:+\mathrm{1}=\mathrm{0}\Rightarrow{t}^{\mathrm{2}} −{t}+\mathrm{1}=\mathrm{0}\:\:\:\left({t}={z}^{\mathrm{2}} \right) \\ $$$$\Delta=\mathrm{1}−\mathrm{4}=−\mathrm{3}\:\Rightarrow{t}_{\mathrm{1}} =\frac{\mathrm{1}+{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:={e}^{\frac{{i}\pi}{\mathrm{3}}} \:{and}\:{t}_{\mathrm{2}} =\frac{\mathrm{1}−{i}\sqrt{\mathrm{3}}}{\mathrm{2}}={e}^{−\frac{{i}\pi}{\mathrm{3}}} \\ $$$${t}^{\mathrm{2}} −{t}+\mathrm{1}\:=\left({t}−{e}^{\frac{{i}\pi}{\mathrm{3}}} \right)\left({t}−{e}^{−\frac{{i}\pi}{\mathrm{3}}} \right)\:\Rightarrow{z}^{\mathrm{4}} −{z}^{\mathrm{2}} \:\:+\mathrm{1}\:=\left({z}^{\mathrm{2}} −{e}^{\frac{{i}\pi}{\mathrm{3}}} \right)\left({z}^{\mathrm{2}} −{e}^{\frac{−{i}\pi}{\mathrm{3}}} \right) \\ $$$$=\left({z}−{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)\left({z}+{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)\left({z}−{e}^{−\frac{{i}\pi}{\mathrm{6}}} \right)\left({z}+{e}^{\frac{−{i}\pi}{\mathrm{6}}} \right)\Rightarrow \\ $$$$\varphi\left({z}\right)=\frac{\mathrm{1}}{\left({z}−{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)^{\mathrm{2}} \left({z}+{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)^{\mathrm{2}} \left({z}−{e}^{−\frac{{i}\pi}{\mathrm{6}}} \right)^{\mathrm{2}} \left({z}+{e}^{−\frac{{i}\pi}{\mathrm{6}}} \right)^{\mathrm{2}} } \\ $$$${residus}\:{theorem}\:{give}\:\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}=\mathrm{2}{i}\pi\left\{{Res}\left(\varphi,{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)+{Res}\left(\varphi,−{e}^{−\frac{{i}\pi}{\mathrm{6}}} \right)\right\} \\ $$$${Res}\left(\varphi,{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)={lim}_{{z}\rightarrow{e}^{\frac{{i}\pi}{\mathrm{6}}} } \:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\left\{\left({z}−{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)^{\mathrm{2}} \varphi\left({z}\right)\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{e}^{\frac{{i}\pi}{\mathrm{6}}} } \:\:\:\left\{\frac{\mathrm{1}}{\left({z}+{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)\left({z}^{\mathrm{2}} −{e}^{−\frac{{i}\pi}{\mathrm{3}}} \right)^{\mathrm{2}} }\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{e}^{\frac{{i}\pi}{\mathrm{6}}} } \:\:−\frac{\left({z}^{\mathrm{2}} −{e}^{−\frac{{i}\pi}{\mathrm{3}}} \right)^{\mathrm{2}} +\left({z}+{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)×\left(\mathrm{4}{z}\right)\left({z}^{\mathrm{2}} −{e}^{−\frac{{i}\pi}{\mathrm{3}}} \right)}{\left({z}+{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)^{\mathrm{2}} \left({z}^{\mathrm{2}} −{e}^{−\frac{{i}\pi}{\mathrm{3}}} \right)^{\mathrm{4}} } \\ $$$$=−{lim}_{{z}\rightarrow{e}^{\frac{{i}\pi}{\mathrm{6}}} } \:\:\:\:\frac{\left({z}^{\mathrm{2}} −{e}^{−\frac{{i}\pi}{\mathrm{3}}} \right)+\mathrm{4}{z}\left({z}+{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)}{\left({z}+{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)^{\mathrm{2}} \left({z}^{\mathrm{2}} −{e}^{−\frac{{i}\pi}{\mathrm{3}}} \right)^{\mathrm{3}} } \\ $$$$=−\frac{{e}^{\frac{{i}\pi}{\mathrm{3}}} −{e}^{−\frac{{i}\pi}{\mathrm{3}}} +\mathrm{4}{e}^{\frac{{i}\pi}{\mathrm{6}}} ×\mathrm{2}{e}^{\frac{{i}\pi}{\mathrm{6}}} }{\left(\mathrm{2}{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)^{\mathrm{2}} \left({e}^{\frac{{i}\pi}{\mathrm{3}}} −{e}^{−\frac{{i}\pi}{\mathrm{3}}} \right)^{\mathrm{3}} }\:=−\frac{\mathrm{2}{isin}\left(\frac{\pi}{\mathrm{3}}\right)+\mathrm{8}\:{e}^{\frac{{i}\pi}{\mathrm{3}}} }{\mathrm{2}{e}^{\frac{{i}\pi}{\mathrm{3}}} \left(\mathrm{2}{i}\right)^{\mathrm{3}} {sin}^{\mathrm{3}} \left(\frac{\pi}{\mathrm{3}}\right)} \\ $$$$=−\frac{{isin}\left(\frac{\pi}{\mathrm{3}}\right)+\mathrm{4}{e}^{\frac{{i}\pi}{\mathrm{3}}} }{−\mathrm{8}{i}\:{e}^{\frac{{i}\pi}{\mathrm{3}}} \:{sin}^{\mathrm{3}} \left(\frac{\pi}{\mathrm{3}}\right)}\:={e}^{−\frac{{i}\pi}{\mathrm{3}}} ×\frac{{sin}\left(\frac{\pi}{\mathrm{3}}\right)−\mathrm{4}{ie}^{\frac{{i}\pi}{\mathrm{3}}} }{{sin}^{\mathrm{3}} \left(\frac{\pi}{\mathrm{3}}\right)} \\ $$$$=\frac{{sin}\left(\frac{\pi}{\mathrm{3}}\right){e}^{−\frac{{i}\pi}{\mathrm{3}}} \:−\mathrm{4}{i}}{\mathrm{8}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{3}} }\:=\frac{\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{e}^{−\frac{{i}\pi}{\mathrm{3}}} −\mathrm{4}{i}}{\mathrm{3}\sqrt{\mathrm{3}}}\:\:….{be}\:{continued}… \\ $$
Commented by mathmax by abdo last updated on 01/Mar/20
$${pareametric}\:{method}\:{let}\:\varphi\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{4}} −{x}^{\mathrm{2}} \:+{a}}\:\:{witha}>\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${we}\:{have}\:\varphi^{'} \left({a}\right)\:=−\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{4}} −{x}^{\mathrm{2}} \:+{a}\right)^{\mathrm{2}} }\:\Rightarrow\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\left({x}^{\mathrm{4}} −{x}^{\mathrm{2}} \:+{a}\right)^{\mathrm{2}} }=−\varphi^{'} \left({a}\right) \\ $$$${we}\:{have}\:\mathrm{2}\varphi\left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\frac{{dx}}{{x}^{\mathrm{4}} −{x}^{\mathrm{2}} \:+{a}}\:{let}\:{W}\left({z}\right)=\frac{\mathrm{1}}{{z}^{\mathrm{4}} −{z}^{\mathrm{2}} \:+{a}} \\ $$$${poles}\:{of}\:{W}? \\ $$$${z}^{\mathrm{4}} −{z}^{\mathrm{2}} \:+{a}\:=\mathrm{0}\:\Rightarrow{t}^{\mathrm{2}} −{t}\:+{a}\:=\mathrm{0}\:\:\left({t}={z}^{\mathrm{2}} \right) \\ $$$$\Delta=\mathrm{1}−\mathrm{4}{a}<\mathrm{0}\:\Rightarrow\Delta=\left({i}\sqrt{\mathrm{4}{a}−\mathrm{1}}\right)^{\mathrm{2}} \:\Rightarrow{z}_{\mathrm{1}} =\frac{\mathrm{1}+{i}\sqrt{\mathrm{4}{a}−\mathrm{1}}}{\mathrm{2}} \\ $$$${z}_{\mathrm{2}} =\frac{\mathrm{1}−{i}\sqrt{\mathrm{4}{a}−\mathrm{1}}}{\mathrm{2}}\:\Rightarrow{W}\left({z}\right)\:=\frac{\mathrm{1}}{\left({z}^{\mathrm{2}} −{z}_{\mathrm{1}} \right)\left({z}^{\mathrm{2}} −{z}_{\mathrm{2}} \right)}\:=\frac{\mathrm{1}}{\left({z}−\sqrt{{z}_{\mathrm{1}} }\right)\left({z}+\sqrt{{z}_{\mathrm{1}} }\right)\left({z}−\sqrt{{z}_{\mathrm{2}} }\right)\left({z}+\sqrt{{z}_{\mathrm{2}} }\right)} \\ $$$$\int_{−\infty} ^{+\infty} \:{W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\left\{{Res}\left({W},\sqrt{{z}_{\mathrm{1}} }\right)\:+{Res}\left({W},−\sqrt{{z}_{\mathrm{2}} }\right)\right\} \\ $$$${Res}\left({W},\sqrt{{z}_{\mathrm{1}} }\right)\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{z}_{\mathrm{1}} }\left({z}_{\mathrm{1}} ^{\mathrm{2}} −{z}_{\mathrm{2}} \right)} \\ $$$${Res}\left({W},−\sqrt{{z}_{\mathrm{2}} }\right)\:=\frac{\mathrm{1}}{−\mathrm{2}\sqrt{{z}_{\mathrm{2}} }\left({z}_{\mathrm{2}} ^{\mathrm{2}} \:−{z}_{\mathrm{1}} \right)}\:=−\frac{\mathrm{1}}{\mathrm{2}\sqrt{{z}_{\mathrm{2}} }\left({z}_{\mathrm{2}} ^{\mathrm{2}} −{z}_{\mathrm{1}} \right)}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:{W}\left({z}\right){dz}\:={i}\pi\left\{\:\frac{\mathrm{1}}{\:\sqrt{{z}_{\mathrm{1}} }\left({z}_{\mathrm{1}} ^{\mathrm{2}} −{z}_{\mathrm{2}} \right)}−\frac{\mathrm{1}}{\:\sqrt{{z}_{\mathrm{2}} }\left({z}_{\mathrm{2}} ^{\mathrm{2}} −{z}_{\mathrm{1}} \right)}\right\} \\ $$$$\mid{z}_{\mathrm{1}} \mid=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{1}+\mathrm{4}{a}−\mathrm{1}}=\sqrt{{a}}\:\Rightarrow{z}_{\mathrm{1}} =\sqrt{{a}}{e}^{{iarctan}\sqrt{\mathrm{4}{a}−\mathrm{1}}} \\ $$$${z}_{\mathrm{2}} =\sqrt{{a}}{e}^{−{iarctan}\left(\sqrt{\mathrm{4}{a}−\mathrm{1}}\right)} \:\Rightarrow\sqrt{{z}_{\mathrm{1}} }=^{\mathrm{4}} \sqrt{{a}}{e}^{\frac{{i}}{\mathrm{2}}{arctan}\left(\sqrt{\mathrm{4}{a}−\mathrm{1}}\right)} \\ $$$${z}_{\mathrm{1}} ^{\mathrm{2}} −{z}_{\mathrm{2}} ={a}\:{e}^{\mathrm{2}{iarctan}\left(\sqrt{\mathrm{4}{a}−\mathrm{1}}\right)} −\sqrt{{a}}{e}^{−{iarctan}\left(\sqrt{\mathrm{4}{a}−\mathrm{1}}\right)} \:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:{W}\left({z}\right){dz}\:={i}\pi\left\{\:\frac{\mathrm{1}}{\left(^{\mathrm{4}} \sqrt{{a}}\right){e}^{{iarctan}\left(\sqrt{\mathrm{4}{a}−\mathrm{1}}\right)} \left({a}\:{e}^{\mathrm{2}{iarctan}\left(\sqrt{\mathrm{4}{a}−\mathrm{1}}\right)} −\sqrt{{a}}{e}^{−{iarctan}\left(\sqrt{\mathrm{4}{a}−\mathrm{1}}\right)} \right.}−\frac{\mathrm{1}}{\left(^{\mathrm{4}} \sqrt{{a}}\right){e}^{−{iarctan}\left(\sqrt{\mathrm{4}{a}−\mathrm{1}}\right)} \left({ae}^{−\mathrm{2}{iarctan}\left(\sqrt{\mathrm{4}{a}−\mathrm{1}}\right)} −\sqrt{{a}}{e}^{{iarctan}\left(\sqrt{\mathrm{4}{a}−\mathrm{1}}\right)} \right)}\right\} \\ $$$$…{be}\:{continued}… \\ $$