Menu Close

calculate-0-dx-x-4-x-2-1-




Question Number 93634 by abdomathmax last updated on 14/May/20
calculate ∫_0 ^∞    (dx/(x^4  +x^2  +1))
calculate0dxx4+x2+1
Commented by mathmax by abdo last updated on 14/May/20
I =∫_0 ^∞   (dx/(x^4  +x^2  +1)) ⇒2A =∫_(−∞) ^(+∞)  (dx/(x^4  +x^2  +1)) let ϕ(z) =(1/(z^4  +z^2  +1))  poles of ϕ?     z^4  +z^2  +1 =0 →t^2  +t +1 =0  (t=z^2 )  Δ=−3 ⇒t_1 =((−1+i(√3))/2) =e^((i2π)/3)    , t_2 =((−1−i(√3))/2) =e^(−((i2π)/3))  ⇒  ϕ(z) =(1/((z^2 −e^((i2π)/3) )(z^2 −e^(−((i2π)/3)) ))) =(1/((z−e^((iπ)/3) )(z+e^((iπ)/3) )(z−e^((−iπ)/3) )(z+e^(−((iπ)/3)) )))  rdsidus theorem give ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,e^((iπ)/3)  )+Res(ϕ,−e^(−((iπ)/3)) )}  Res(ϕ,e^((iπ)/3) ) =(1/(2e^((iπ)/3) (2isin(((2π)/3))))) =(e^(−((iπ)/3)) /(4i×((√3)/2))) =(e^(−((iπ)/3)) /(2i(√3)))  Res(ϕ,−e^(−((iπ)/3)) ) =(1/(−2e^(−((iπ)/3)) (−2i sin(((2π)/3))))) =(e^((iπ)/3) /(4i ×((√3)/2))) =(e^((iπ)/3) /(2i(√3))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =((2iπ)/(2i(√3))){ e^(−((iπ)/3))  +e^((iπ)/3) } =(π/( (√3)))(2cos((π/3))) =(π/( (√3)))  2∫_(−∞) ^(+∞)  (dx/(x^4  +x^2  +1)) =(π/( (√3))) ⇒★∫_(−∞) ^(+∞)  (dx/(x^4  +x^2  +1)) =(π/(2(√3))) ★
I=0dxx4+x2+12A=+dxx4+x2+1letφ(z)=1z4+z2+1polesofφ?z4+z2+1=0t2+t+1=0(t=z2)Δ=3t1=1+i32=ei2π3,t2=1i32=ei2π3φ(z)=1(z2ei2π3)(z2ei2π3)=1(zeiπ3)(z+eiπ3)(zeiπ3)(z+eiπ3)rdsidustheoremgive+φ(z)dz=2iπ{Res(φ,eiπ3)+Res(φ,eiπ3)}Res(φ,eiπ3)=12eiπ3(2isin(2π3))=eiπ34i×32=eiπ32i3Res(φ,eiπ3)=12eiπ3(2isin(2π3))=eiπ34i×32=eiπ32i3+φ(z)dz=2iπ2i3{eiπ3+eiπ3}=π3(2cos(π3))=π32+dxx4+x2+1=π3+dxx4+x2+1=π23
Commented by mathmax by abdo last updated on 14/May/20
sorry  2 ∫_0 ^∞  (dx/(x^4  +x^2  +1)) =(π/( (√3))) ⇒★ ∫_0 ^∞   (dx/(x^4  +x^2  +1)) =(π/(2(√3))) ★
sorry20dxx4+x2+1=π30dxx4+x2+1=π23
Answered by Kunal12588 last updated on 14/May/20
(x^4 +x^2 +1)=(ax^2 +bx+c)(px^2 +qx+r)  x^4 +x^2 +1=apx^4 +(aq+bp)x^3 +(ar+bq+cp)x^2                              +(br+cq)x+cr  a=1, b=±1, c=1  p=1, q=∓1, r=1  x^4 +x^2 +1=(x^2 +x+1)(x^2 −x+1)    (1/(x^4 +x^2 +1))=((ax+b)/(x^2 +x+1))+((px+q)/(x^2 −x+1))  1=(a+p)x^3 +(−a+b+p+q)x^2 +(a−b+p+q)x          +(b+q)  a=(1/2), b=(1/2)  p=((−1)/2), q=(1/2)  (1/(x^4 +x^2 +1))=((x+1)/(x^2 +x+1))−((x−1)/(x^4 +x+1))    I=∫(dx/(x^4 +x^2 +1))=(1/2)∫((x+1)/(x^2 +x+1))dx−(1/2)∫((x−1)/(x^2 +x+1))dx  I_1 =(1/2)∫((x+1)/(x^2 +x+1))dx  =(1/4)∫((2x+1)/(x^2 +x+1))dx+(1/4)∫(dx/(x^2 +x+1))  =(1/4)ln∣x^2 +x+1∣+(1/4)∫(dx/((x+(1/2))^2 +(3/4)))  =(1/4)ln∣x^2 +x+1∣+(1/4)×(2/( (√3))) tan^(−1) (((x+(1/2)))/((√3)/2))+c    I_1 =(1/4)ln∣x^2 +x+1∣+(1/(2(√3))) tan^(−1) ((2x+1)/( (√3)))+m    I_2 =(1/2)∫((x−1)/(x^2 −x+1))dx  =(1/4)∫((2x−1)/(x^2 −x+1))dx−(1/4)∫(dx/(x^2 −x+1))  =(1/4)ln∣x^2 −x+1∣−(1/4)∫(dx/((x−(1/2))^2 +(((√3)/2))^2 ))  I_2 =(1/4)ln∣x^2 −x+1∣−(1/(2(√3)))tan^(−1) ((2x−1)/( (√3)))+n    I=(1/4)ln∣x^2 +x+1∣+(1/(2(√3))) tan^(−1) ((2x+1)/( (√3)))        −(1/4)ln∣x^2 −x+1∣+(1/(2(√3)))tan^(−1) ((2x−1)/( (√3)))+C  =(1/4)ln∣((x^2 +x+1)/(x^2 −x+1))∣+(1/(2(√3)))[tan^(−1) ((2x+1)/( (√3)))+tan^(−1) ((2x−1)/( (√3)))]+C  ∫_0 ^∞ (dx/(x^4 +x^2 +1))=(1/4)[ln∣((x^2 +x+1)/(x^2 −x+1))∣]_0 ^∞ +                            +(1/(2(√3)))[tan^(−1) ((2x+1)/( (√3)))+tan^(−1) ((2x−1)/( (√3)))]_0 ^∞   =(1/4){ln(((1+(1/∞)+(1/∞^2 ))/(1−(1/∞)+(1/∞^2 ))))−ln(((0^2 +0+1)/(0^2 −0+1)))}  +(1/(2(√3))){tan^(−1) (∞)+tan^(−1) (∞)−tan^(−1) ((1/( (√3))))−tan^(−1) (((−1)/( (√3))))}  =(1/4)[ln(1)−ln(1)]+(1/(2(√3)))[(π/2)+(π/2)−(π/6)+(π/6)]  =(π/(2(√3)))    ∫_0 ^∞ (dx/(x^4 +x^2 +1))=(π/(2(√3)))
(x4+x2+1)=(ax2+bx+c)(px2+qx+r)x4+x2+1=apx4+(aq+bp)x3+(ar+bq+cp)x2+(br+cq)x+cra=1,b=±1,c=1p=1,q=1,r=1x4+x2+1=(x2+x+1)(x2x+1)1x4+x2+1=ax+bx2+x+1+px+qx2x+11=(a+p)x3+(a+b+p+q)x2+(ab+p+q)x+(b+q)a=12,b=12p=12,q=121x4+x2+1=x+1x2+x+1x1x4+x+1I=dxx4+x2+1=12x+1x2+x+1dx12x1x2+x+1dxI1=12x+1x2+x+1dx=142x+1x2+x+1dx+14dxx2+x+1=14lnx2+x+1+14dx(x+12)2+34=14lnx2+x+1+14×23tan1(x+12)32+cI1=14lnx2+x+1+123tan12x+13+mI2=12x1x2x+1dx=142x1x2x+1dx14dxx2x+1=14lnx2x+114dx(x12)2+(32)2I2=14lnx2x+1123tan12x13+nI=14lnx2+x+1+123tan12x+1314lnx2x+1+123tan12x13+C=14lnx2+x+1x2x+1+123[tan12x+13+tan12x13]+C0dxx4+x2+1=14[lnx2+x+1x2x+1]0++123[tan12x+13+tan12x13]0=14{ln(1+1+1211+12)ln(02+0+1020+1)}+123{tan1()+tan1()tan1(13)tan1(13)}=14[ln(1)ln(1)]+123[π2+π2π6+π6]=π230dxx4+x2+1=π23
Commented by niroj last updated on 14/May/20
Great hardwork����
Commented by prakash jain last updated on 14/May/20
������
Commented by Kunal12588 last updated on 14/May/20
thanks sir!
Commented by mathmax by abdo last updated on 14/May/20
thankx for this hardwork
thankxforthishardwork
Answered by Ar Brandon last updated on 14/May/20
L=∫_0 ^∞ (dx/(x^4 +x^2 +1))=(1/2)∫_0 ^∞ (((x^2 +1)−(x^2 −1))/(x^4 +x^2 +1))dx  ⇒2L=∫_0 ^∞ ((x^2 +1)/(x^4 +x^2 +1))dx−∫_0 ^∞ ((x^2 −1)/(x^4 +x^2 +1))dx  ⇒2L=∫_0 ^∞ ((1+(1/x^2 ))/(x^2 +1+(1/x^2 )))dx−∫_0 ^∞ ((1−(1/x^2 ))/(x^2 +1+(1/x^2 )))dx  ⇒2L=∫_0 ^∞ ((1+(1/x^2 ))/((x−(1/x))^2 +3))dx−∫_0 ^∞ ((1−(1/x^2 ))/((x+(1/x))^2 −1))dx  ⇒2L=_(u=x−(1/x)) ^(v=x+(1/x)) ∫_(−∞) ^(+∞) (du/(u^2 +3))−∫_(+∞) ^(+∞) (dv/(v^2 −1))  2L=((√3)/3)[arctan((u/( (√3))))]_(−∞) ^(+∞)   2L=((π(√3))/3)⇒L=((π(√3))/6)  ∫_0 ^∞ (dx/(x^4 +x^2 +1))=((π(√3))/6)
L=0dxx4+x2+1=120(x2+1)(x21)x4+x2+1dx2L=0x2+1x4+x2+1dx0x21x4+x2+1dx2L=01+1x2x2+1+1x2dx011x2x2+1+1x2dx2L=01+1x2(x1x)2+3dx011x2(x+1x)21dx2L=v=x+1xu=x1x+duu2+3++dvv212L=33[arctan(u3)]+2L=π33L=π360dxx4+x2+1=π36

Leave a Reply

Your email address will not be published. Required fields are marked *