Question Number 93634 by abdomathmax last updated on 14/May/20

Commented by mathmax by abdo last updated on 14/May/20

Commented by mathmax by abdo last updated on 14/May/20

Answered by Kunal12588 last updated on 14/May/20
![(x^4 +x^2 +1)=(ax^2 +bx+c)(px^2 +qx+r) x^4 +x^2 +1=apx^4 +(aq+bp)x^3 +(ar+bq+cp)x^2 +(br+cq)x+cr a=1, b=±1, c=1 p=1, q=∓1, r=1 x^4 +x^2 +1=(x^2 +x+1)(x^2 −x+1) (1/(x^4 +x^2 +1))=((ax+b)/(x^2 +x+1))+((px+q)/(x^2 −x+1)) 1=(a+p)x^3 +(−a+b+p+q)x^2 +(a−b+p+q)x +(b+q) a=(1/2), b=(1/2) p=((−1)/2), q=(1/2) (1/(x^4 +x^2 +1))=((x+1)/(x^2 +x+1))−((x−1)/(x^4 +x+1)) I=∫(dx/(x^4 +x^2 +1))=(1/2)∫((x+1)/(x^2 +x+1))dx−(1/2)∫((x−1)/(x^2 +x+1))dx I_1 =(1/2)∫((x+1)/(x^2 +x+1))dx =(1/4)∫((2x+1)/(x^2 +x+1))dx+(1/4)∫(dx/(x^2 +x+1)) =(1/4)ln∣x^2 +x+1∣+(1/4)∫(dx/((x+(1/2))^2 +(3/4))) =(1/4)ln∣x^2 +x+1∣+(1/4)×(2/( (√3))) tan^(−1) (((x+(1/2)))/((√3)/2))+c I_1 =(1/4)ln∣x^2 +x+1∣+(1/(2(√3))) tan^(−1) ((2x+1)/( (√3)))+m I_2 =(1/2)∫((x−1)/(x^2 −x+1))dx =(1/4)∫((2x−1)/(x^2 −x+1))dx−(1/4)∫(dx/(x^2 −x+1)) =(1/4)ln∣x^2 −x+1∣−(1/4)∫(dx/((x−(1/2))^2 +(((√3)/2))^2 )) I_2 =(1/4)ln∣x^2 −x+1∣−(1/(2(√3)))tan^(−1) ((2x−1)/( (√3)))+n I=(1/4)ln∣x^2 +x+1∣+(1/(2(√3))) tan^(−1) ((2x+1)/( (√3))) −(1/4)ln∣x^2 −x+1∣+(1/(2(√3)))tan^(−1) ((2x−1)/( (√3)))+C =(1/4)ln∣((x^2 +x+1)/(x^2 −x+1))∣+(1/(2(√3)))[tan^(−1) ((2x+1)/( (√3)))+tan^(−1) ((2x−1)/( (√3)))]+C ∫_0 ^∞ (dx/(x^4 +x^2 +1))=(1/4)[ln∣((x^2 +x+1)/(x^2 −x+1))∣]_0 ^∞ + +(1/(2(√3)))[tan^(−1) ((2x+1)/( (√3)))+tan^(−1) ((2x−1)/( (√3)))]_0 ^∞ =(1/4){ln(((1+(1/∞)+(1/∞^2 ))/(1−(1/∞)+(1/∞^2 ))))−ln(((0^2 +0+1)/(0^2 −0+1)))} +(1/(2(√3))){tan^(−1) (∞)+tan^(−1) (∞)−tan^(−1) ((1/( (√3))))−tan^(−1) (((−1)/( (√3))))} =(1/4)[ln(1)−ln(1)]+(1/(2(√3)))[(π/2)+(π/2)−(π/6)+(π/6)] =(π/(2(√3))) ∫_0 ^∞ (dx/(x^4 +x^2 +1))=(π/(2(√3)))](https://www.tinkutara.com/question/Q93655.png)
Commented by niroj last updated on 14/May/20
Great hardwork����
Commented by prakash jain last updated on 14/May/20
������
Commented by Kunal12588 last updated on 14/May/20
thanks sir!
Commented by mathmax by abdo last updated on 14/May/20

Answered by Ar Brandon last updated on 14/May/20
![L=∫_0 ^∞ (dx/(x^4 +x^2 +1))=(1/2)∫_0 ^∞ (((x^2 +1)−(x^2 −1))/(x^4 +x^2 +1))dx ⇒2L=∫_0 ^∞ ((x^2 +1)/(x^4 +x^2 +1))dx−∫_0 ^∞ ((x^2 −1)/(x^4 +x^2 +1))dx ⇒2L=∫_0 ^∞ ((1+(1/x^2 ))/(x^2 +1+(1/x^2 )))dx−∫_0 ^∞ ((1−(1/x^2 ))/(x^2 +1+(1/x^2 )))dx ⇒2L=∫_0 ^∞ ((1+(1/x^2 ))/((x−(1/x))^2 +3))dx−∫_0 ^∞ ((1−(1/x^2 ))/((x+(1/x))^2 −1))dx ⇒2L=_(u=x−(1/x)) ^(v=x+(1/x)) ∫_(−∞) ^(+∞) (du/(u^2 +3))−∫_(+∞) ^(+∞) (dv/(v^2 −1)) 2L=((√3)/3)[arctan((u/( (√3))))]_(−∞) ^(+∞) 2L=((π(√3))/3)⇒L=((π(√3))/6) ∫_0 ^∞ (dx/(x^4 +x^2 +1))=((π(√3))/6)](https://www.tinkutara.com/question/Q93690.png)