Menu Close

calculate-0-dx-x-8-x-4-1-




Question Number 98883 by mathmax by abdo last updated on 16/Jun/20
calculate ∫_0 ^∞   (dx/(x^8  +x^4 +1))
calculate0dxx8+x4+1
Answered by maths mind last updated on 18/Jun/20
X^8 +X^4 +1  X^4 =y  y^2 +y+1=0⇒y=e^(i((2kπ)/3)) ,k∈{1,2}  x_k =e^(i(π/6)+((i2kπ)/4)) ,k∈{0,1,2,3}  x_k =e^(i(π/3)+((2ikπ)/4))   a_1 =e^(i(π/6)) ,a_2 =e^(i(π/3)) ,a_3 =e^(i((π/6)+(π/2))) ,a_4 =e^(i((π/3)+(π/2))) ,  ∫_0 ^(+∞) (dx/(x^8 +x^4 +1))=(1/2)∫_(−∞) ^(+∞) (dx/(x^8 +x^4 +1))=(1/2).2iπ Σ_(ak) Res(f(z),a_k )  =iπ.Σ_(k=1) ^4 (1/(8a_k ^7 +4a_k ^3 ))
X8+X4+1X4=yy2+y+1=0y=ei2kπ3,k{1,2}xk=eiπ6+i2kπ4,k{0,1,2,3}xk=eiπ3+2ikπ4a1=eiπ6,a2=eiπ3,a3=ei(π6+π2),a4=ei(π3+π2),0+dxx8+x4+1=12+dxx8+x4+1=12.2iπakRes(f(z),ak)=iπ.4k=118ak7+4ak3

Leave a Reply

Your email address will not be published. Required fields are marked *