Menu Close

calculate-0-e-2x-1-e-4x-dx-




Question Number 38126 by maxmathsup by imad last updated on 22/Jun/18
calculate   ∫_0 ^∞   e^(−2x) (√(1+e^(−4x) ))dx .
calculate0e2x1+e4xdx.
Commented by math khazana by abdo last updated on 26/Jun/18
let I = ∫_0 ^∞   e^(−2x) (√(1+e^(−4x) ))dx changement  e^(−2x) =t give −2x =ln(t)and   I = −∫_0 ^1  t(√(1+t^2 ))((−dt)/(2t)) =(1/2) ∫_0 ^1  (√(1+t^2 ))dt   2I =_(t=sh(u))   ∫_0 ^(ln(1 +(√2)))   ch(t)ch(t)dt  =(1/2) ∫_0 ^(ln(1+(√2))) (1+ch(2t))dt  =((ln(1+(√2)))/2) +(1/4) [sh(2t)]_0 ^(ln(1+(√2)))   =((ln(1+(√2)))/2) +(1/4)sh(2ln(1+(√2)))  =((ln(1+(√2))/2)  +(1/8){(1+(√2))^2  −(1+(√2))^(−2) } .
letI=0e2x1+e4xdxchangemente2x=tgive2x=ln(t)andI=01t1+t2dt2t=12011+t2dt2I=t=sh(u)0ln(1+2)ch(t)ch(t)dt=120ln(1+2)(1+ch(2t))dt=ln(1+2)2+14[sh(2t)]0ln(1+2)=ln(1+2)2+14sh(2ln(1+2))=ln(1+22+18{(1+2)2(1+2)2}.
Commented by math khazana by abdo last updated on 26/Jun/18
I =((ln(1+(√2)))/4) +(1/(16)){ (1+(√2))^2 −(1+(√2))^(−2) }.
I=ln(1+2)4+116{(1+2)2(1+2)2}.
Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jun/18
t=e^(−2x )  dt=−2e^(−2x) dx  =((−1)/2)∫_1 ^0 (√(1+t^2 ))  dt  =(1/2)∫_0 ^1 (√(1+t^2 ))  dt  use formula ∫(√(x^2 +a^2 )) dx
t=e2xdt=2e2xdx=12101+t2dt=12011+t2dtuseformulax2+a2dx
Commented by tanmay.chaudhury50@gmail.com last updated on 22/Jun/18

Leave a Reply

Your email address will not be published. Required fields are marked *