Menu Close

calculate-0-e-2x-1-sinx-dx-




Question Number 145044 by mathmax by abdo last updated on 01/Jul/21
calculate ∫_0 ^∞   e^(−2x) (√(1+sinx))dx
calculate0e2x1+sinxdx
Answered by qaz last updated on 02/Jul/21
∫_0 ^∞ e^(−2x) (√(1+sin x))dx  =∫_0 ^∞ e^(−2x) (sin (x/2)+cos (x/2))dx  =L(sin (x/2)+cos (x/2))(s=2)  =(((1/2)+s)/(s^2 +(1/4)))∣_(s=2)   =((10)/(17))
0e2x1+sinxdx=0e2x(sinx2+cosx2)dx=L(sinx2+cosx2)(s=2)=12+ss2+14s=2=1017
Commented by mathmax by abdo last updated on 03/Jul/21
answer not correct sir gaz
answernotcorrectsirgaz
Answered by mnjuly1970 last updated on 02/Jul/21
(√(1+sin(x))) = ∣ sin((x/2))+cos((x/2))∣
1+sin(x)=sin(x2)+cos(x2)
Answered by mathmax by abdo last updated on 02/Jul/21
I=∫_0 ^∞  e^(−2x) (√(1+sinx))dx  we have 1+sinx=(cos((x/2))+sin((x/2)))^2  ⇒  (√(1+sinx))=∣cos((x/2))+sin((x/2))∣ ⇒  I=∫_0 ^∞ e^(−2x) ∣cos((x/2))+sin((x/2))∣dx=_((x/2)=t)  2 ∫_0 ^∞ e^(−4t) ∣cost+sint∣dt  =2∫_0 ^∞ e^(−4t) ∣(√2)sin(t+(π/4))∣dt=2(√2)∫_0 ^∞  e^(−4t) ∣sin(t+(π/4))∣dt  =_(t+(π/4)=y)   2(√2)∫_(π/4) ^(+∞)  e^(−4(y−(π/4))) ∣siny∣dy  =2(√2)e^π  ∫_(π/4) ^(+∞)  e^(−4y) ∣siny∣dy  =2(√2)e^π (∫_0 ^∞  e^(−4y) ∣siny∣dy−∫_0 ^(π/4)  e^(−4y)  siny dy) we have  ∫_0 ^(π/4)  e^(−4y) siny dy =Im(∫_0 ^(π/4)  e^(−4y+iy)  dy)  ∫_0 ^(π/4)  e^((−4+i)y)  dy =[(1/(−4+i))e^((−4+i)y) ]_0 ^(π/4)   =−(1/(4−i))(e^((−4+i)(π/4)) −1)  =−((4+i)/(17))(e^(−π) ((1/( (√2)))+(i/( (√2))))−1)  =−(1/(17))(4+i)((e^(−π) /( (√2))) +i (e^(−π) /( (√2)))−1)  =−(1/(17))(((4e^(−π) )/( (√2)))+4i(e^(−π) /( (√2)))−4+i(e^(−π) /( (√2)))−(e^(−π) /( (√2)))−i) ⇒  ∫_0 ^(π/4)  e^(−4y)  sinydy=−(1/(17))(((4e^(−π) )/( (√2))) +(e^(−π) /( (√2)))−1)=(1/(17))(1−((5e^(−π) )/( (√2))))  ∫_0 ^∞  e^(−4y) ∣siny∣dy =Σ_(n=0) ^∞  ∫_(nπ) ^((n+1)π)  e^(−4y) ∣siny∣dy  =_(y=nπ+z)   Σ_(n=0) ^∞  ∫_0 ^π  e^(−4(nπ+z)) sinz dz     (sinz≥0 on [0,π])  =Σ_(n=0) ^∞  e^(−4nπ)  ∫_0 ^π  e^(−4z) sinzdz  we have  ∫_0 ^π  e^(−4z)  sinz dz =Im(∫_0 ^π  e^(−4z+iz) dz)  ∫_0 ^π  e^((−4+i)z) dz =[(1/(−4+i))e^((−4+i)z) ]_0 ^π   =−(1/(4−i))(e^((−4+i)π) −1)  =−((4+i)/(17))(−e^(−4π) −1) =((4+i)/(17))(1+e^(−4π) ) ⇒  ∫_0 ^π  e^(−4z)  sinz dz =((1+e^(−4π) )/(17)) ⇒  ∫_0 ^∞   e^(−4y) ∣siny∣dy =((1+e^(−4π) )/(17))Σ_(n=0) ^∞  (e^(−4π) )^n   =((1+e^(−4π) )/(17))×(1/(1−e^(−4π) )) =((1+e^(4π) )/(17(1−e^(−4π) ))) ⇒  I =2(√2)e^π (((1+e^(4π) )/(17(1−e^(4π) )))−(1/(17))(1−((5e^(−π) )/( (√2))))  =((2(√2))/(17))(((1+e^(4π) )/(1−e^(4π) ))−1+((5e^(−π) )/( (√2))))
I=0e2x1+sinxdxwehave1+sinx=(cos(x2)+sin(x2))21+sinx=∣cos(x2)+sin(x2)I=0e2xcos(x2)+sin(x2)dx=x2=t20e4tcost+sintdt=20e4t2sin(t+π4)dt=220e4tsin(t+π4)dt=t+π4=y22π4+e4(yπ4)sinydy=22eππ4+e4ysinydy=22eπ(0e4ysinydy0π4e4ysinydy)wehave0π4e4ysinydy=Im(0π4e4y+iydy)0π4e(4+i)ydy=[14+ie(4+i)y]0π4=14i(e(4+i)π41)=4+i17(eπ(12+i2)1)=117(4+i)(eπ2+ieπ21)=117(4eπ2+4ieπ24+ieπ2eπ2i)0π4e4ysinydy=117(4eπ2+eπ21)=117(15eπ2)0e4ysinydy=n=0nπ(n+1)πe4ysinydy=y=nπ+zn=00πe4(nπ+z)sinzdz(sinz0on[0,π])=n=0e4nπ0πe4zsinzdzwehave0πe4zsinzdz=Im(0πe4z+izdz)0πe(4+i)zdz=[14+ie(4+i)z]0π=14i(e(4+i)π1)=4+i17(e4π1)=4+i17(1+e4π)0πe4zsinzdz=1+e4π170e4ysinydy=1+e4π17n=0(e4π)n=1+e4π17×11e4π=1+e4π17(1e4π)I=22eπ(1+e4π17(1e4π)117(15eπ2)=2217(1+e4π1e4π1+5eπ2)
Commented by mathmax by abdo last updated on 02/Jul/21
I=((2(√2))/(17))(((1+e^(4π) )/(1−e^(−4π) ))−1 +((5e^(−π) )/( (√2))))
I=2217(1+e4π1e4π1+5eπ2)
Commented by mnjuly1970 last updated on 03/Jul/21
very nice sir max ...
verynicesirmax
Commented by qaz last updated on 04/Jul/21
nice solution sir
nicesolutionsir

Leave a Reply

Your email address will not be published. Required fields are marked *