Menu Close

calculate-0-e-2x-sin-pi-x-dx-




Question Number 37812 by prof Abdo imad last updated on 17/Jun/18
calculate ∫_0 ^∞   e^(−2x) sin{π[x]}dx .
calculate0e2xsin{π[x]}dx.
Commented by abdo mathsup 649 cc last updated on 19/Jun/18
∫_0 ^∞    e^(−2x) sin{π[x]}dx=Σ_(n=0) ^∞  ∫_n ^(n+1)  e^(−2x)  sin(nπ)dx  =Σ_(n=0) ^∞  sin(nπ)∫_n ^(n+1)  e^(−2x)  dx =0
0e2xsin{π[x]}dx=n=0nn+1e2xsin(nπ)dx=n=0sin(nπ)nn+1e2xdx=0
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Jun/18
[x]=0   1>x≥0  [x]=1   2>x≥1  [x]=2   3>x≥2    thus putting the value of [x]  we get intregal  multiple of Π...thus value of sin{Π[x]}=0  so the intrdgation value is zero  Refer floor function/greatest integer function
[x]=01>x0[x]=12>x1[x]=23>x2thusputtingthevalueof[x]wegetintregalmultipleofΠthusvalueofsin{Π[x]}=0sotheintrdgationvalueiszeroReferfloorfunction/greatestintegerfunction

Leave a Reply

Your email address will not be published. Required fields are marked *