Menu Close

calculate-0-e-x-1-e-2x-dx-




Question Number 38127 by maxmathsup by imad last updated on 22/Jun/18
calculate ∫_0 ^∞   e^(−x) (√(1+e^(−2x) ))dx
calculate0ex1+e2xdx
Commented by abdo mathsup 649 cc last updated on 23/Jun/18
let I = ∫_0 ^∞   e^(−x) (√(1+e^(−2x) ))dx changement e^(−x) =t  give  −x=ln(t) ⇒x=−ln(t) and  I = −∫_0 ^1   t(√(1+t^2 )) ((−dt)/t)   = ∫_0 ^1  (√(1+t^2 )) dt  also chsng. t=shu give  I = ∫_0 ^(argsh(1))   ch(u)ch(u)du  = ∫_0 ^(ln(1+(√2)))  ((1+ch(2u))/2)du  =(1/2)ln(1+(√2))  +(1/4)[sh(2u)]_0 ^(ln(1+(√2)))   =(1/2)ln(1+(√2))  +(1/4)[ ((e^(2u)  −e^(−2u) )/2)]_0 ^(ln(1+(√2)))   =(1/2)ln(1+(√2)) +(1/8){ (1+(√2))^2  −(1+(√2))^(−2) }
letI=0ex1+e2xdxchangementex=tgivex=ln(t)x=ln(t)andI=01t1+t2dtt=011+t2dtalsochsng.t=shugiveI=0argsh(1)ch(u)ch(u)du=0ln(1+2)1+ch(2u)2du=12ln(1+2)+14[sh(2u)]0ln(1+2)=12ln(1+2)+14[e2ue2u2]0ln(1+2)=12ln(1+2)+18{(1+2)2(1+2)2}

Leave a Reply

Your email address will not be published. Required fields are marked *