Menu Close

calculate-0-e-x-2-e-x-x-dx-




Question Number 53601 by maxmathsup by imad last updated on 23/Jan/19
calculate ∫_0 ^∞    ((e^(−x^2 ) −e^(−x) )/x) dx .
calculate0ex2exxdx.
Answered by tanmay.chaudhury50@gmail.com last updated on 24/Jan/19
∫_0 ^∞ e^(−x^2 ) x^(−1) dx−∫_0 ^∞ e^(−x) x^(−1) dx  x=(√t)  dx=(1/(2(√t) ))dt  ∫_0 ^∞ ((e^(−t) ×)/( (√t)))×(dt/(2(√t)))−∫_0 ^∞ e^(−x) ×(dx/x)  (1/2)∫_0 ^∞ e^(−t) ×(dt/t)−∫_0 ^∞ e^(−x) ×(dx/x)  gamma functiin=∫_0 ^∞ e^(−x) x^(n−1) dx=⌈(n)  ⌈(n+1)=n⌈(n)=n! when n>0  so we can not use gamma function..  I_1 =∫_0 ^∞ (e^(−ax) /x)dx  (dI_1 /da)=∫_0 ^∞ ((e^(−ax) ×−x)/x)dx=−∫_0 ^∞ e^(−ax) dx=−1×∣(e^(−ax) /(−a))∣_0 ^∞   (dI_1 /da)=(1/a)((1/e^∞ )−(1/e^0 )=−(1/a)  I_1 =−lna+c  we have to find value of c   wait....
0ex2x1dx0exx1dxx=tdx=12tdt0et×t×dt2t0ex×dxx120et×dtt0ex×dxxgammafunctiin=0exxn1dx=(n)(n+1)=n(n)=n!whenn>0sowecannotusegammafunction..I1=0eaxxdxdI1da=0eax×xxdx=0eaxdx=1×eaxa0dI1da=1a(1e1e0=1aI1=lna+cwehavetofindvalueofcwait.

Leave a Reply

Your email address will not be published. Required fields are marked *