Menu Close

calculate-0-e-x-2-e-x-x-dx-




Question Number 53601 by maxmathsup by imad last updated on 23/Jan/19
calculate ∫_0 ^∞    ((e^(−x^2 ) −e^(−x) )/x) dx .
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−{x}^{\mathrm{2}} } −{e}^{−{x}} }{{x}}\:{dx}\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 24/Jan/19
∫_0 ^∞ e^(−x^2 ) x^(−1) dx−∫_0 ^∞ e^(−x) x^(−1) dx  x=(√t)  dx=(1/(2(√t) ))dt  ∫_0 ^∞ ((e^(−t) ×)/( (√t)))×(dt/(2(√t)))−∫_0 ^∞ e^(−x) ×(dx/x)  (1/2)∫_0 ^∞ e^(−t) ×(dt/t)−∫_0 ^∞ e^(−x) ×(dx/x)  gamma functiin=∫_0 ^∞ e^(−x) x^(n−1) dx=⌈(n)  ⌈(n+1)=n⌈(n)=n! when n>0  so we can not use gamma function..  I_1 =∫_0 ^∞ (e^(−ax) /x)dx  (dI_1 /da)=∫_0 ^∞ ((e^(−ax) ×−x)/x)dx=−∫_0 ^∞ e^(−ax) dx=−1×∣(e^(−ax) /(−a))∣_0 ^∞   (dI_1 /da)=(1/a)((1/e^∞ )−(1/e^0 )=−(1/a)  I_1 =−lna+c  we have to find value of c   wait....
$$\int_{\mathrm{0}} ^{\infty} {e}^{−{x}^{\mathrm{2}} } {x}^{−\mathrm{1}} {dx}−\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} {x}^{−\mathrm{1}} {dx} \\ $$$${x}=\sqrt{{t}}\:\:{dx}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{t}}\:}{dt} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{t}} ×}{\:\sqrt{{t}}}×\frac{{dt}}{\mathrm{2}\sqrt{{t}}}−\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} ×\frac{{dx}}{{x}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} ×\frac{{dt}}{{t}}−\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} ×\frac{{dx}}{{x}} \\ $$$${gamma}\:{functiin}=\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} {x}^{{n}−\mathrm{1}} {dx}=\lceil\left({n}\right) \\ $$$$\lceil\left({n}+\mathrm{1}\right)={n}\lceil\left({n}\right)={n}!\:{when}\:{n}>\mathrm{0} \\ $$$${so}\:{we}\:{can}\:{not}\:{use}\:{gamma}\:{function}.. \\ $$$${I}_{\mathrm{1}} =\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{ax}} }{{x}}{dx} \\ $$$$\frac{{dI}_{\mathrm{1}} }{{da}}=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{ax}} ×−{x}}{{x}}{dx}=−\int_{\mathrm{0}} ^{\infty} {e}^{−{ax}} {dx}=−\mathrm{1}×\mid\frac{{e}^{−{ax}} }{−{a}}\mid_{\mathrm{0}} ^{\infty} \\ $$$$\frac{{dI}_{\mathrm{1}} }{{da}}=\frac{\mathrm{1}}{{a}}\left(\frac{\mathrm{1}}{{e}^{\infty} }−\frac{\mathrm{1}}{{e}^{\mathrm{0}} }=−\frac{\mathrm{1}}{{a}}\right. \\ $$$${I}_{\mathrm{1}} =−{lna}+{c} \\ $$$${we}\:{have}\:{to}\:{find}\:{value}\:{of}\:{c}\:\:\:{wait}…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *