Menu Close

calculate-0-e-x-n-dx-




Question Number 124920 by mathmax by abdo last updated on 07/Dec/20
calculate ∫_0 ^∞  e^(−x^n ) dx
calculate0exndx
Answered by Dwaipayan Shikari last updated on 07/Dec/20
∫_0 ^∞ e^(−x^n ) dx        x^n =u⇒nx^(n−1) =(du/dx)  ⇒(1/n)∫_0 ^∞ x^(1−n) e^(−u) du =(1/n)∫_0 ^∞ u^((1−n)/n) e^(−u) du =(1/n)Γ((1/n))=Γ(((n+1)/n))
0exndxxn=unxn1=dudx1n0x1neudu=1n0u1nneudu=1nΓ(1n)=Γ(n+1n)
Answered by mathmax by abdo last updated on 07/Dec/20
A_n =∫_0 ^∞  e^(−x^n ) dx  we do the changement x=t^(1/n)  ⇒  A_n =∫_0 ^∞   e^(−t) ×(1/n)t^((1/n)−1)  dt =(1/n)∫_0 ^∞  t^((1/n)−1)  e^(−t)  dt  =(1/n)×Γ((1/n))
An=0exndxwedothechangementx=t1nAn=0et×1nt1n1dt=1n0t1n1etdt=1n×Γ(1n)

Leave a Reply

Your email address will not be published. Required fields are marked *