Menu Close

calculate-0-e-x-x-1-dx-




Question Number 87013 by mathmax by abdo last updated on 01/Apr/20
calculate ∫_0 ^∞   (e^(−[x]) /(x+1))dx
calculate0e[x]x+1dx
Commented by mathmax by abdo last updated on 02/Apr/20
I =∫_1 ^∞   (e^(−[x]) /(x+1))dx ⇒ I =Σ_(n=1) ^∞  ∫_n ^(n+1)  (e^(−n) /(x+1))dx  =Σ_(n=1) ^∞  e^(−n) [ln(x+1)]_n ^(n+1)  =Σ_(n=1) ^∞  e^(−n) {ln(n+1)−ln(n)}  =Σ_(n=1) ^∞  e^(−n) ln(((n+1)/n)) =Σ_(n=1) ^∞  e^(−n) ln(1+(1/n))  and this serie is  convergent.
I=1e[x]x+1dxI=n=1nn+1enx+1dx=n=1en[ln(x+1)]nn+1=n=1en{ln(n+1)ln(n)}=n=1enln(n+1n)=n=1enln(1+1n)andthisserieisconvergent.
Commented by mathmax by abdo last updated on 02/Apr/20
forgive the Q is calculate ∫_1 ^(+∞)  (e^(−[x]) /(x+1))dx
forgivetheQiscalculate1+e[x]x+1dx

Leave a Reply

Your email address will not be published. Required fields are marked *