Question Number 87013 by mathmax by abdo last updated on 01/Apr/20
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\left[{x}\right]} }{{x}+\mathrm{1}}{dx} \\ $$
Commented by mathmax by abdo last updated on 02/Apr/20
$${I}\:=\int_{\mathrm{1}} ^{\infty} \:\:\frac{{e}^{−\left[{x}\right]} }{{x}+\mathrm{1}}{dx}\:\Rightarrow\:{I}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\int_{{n}} ^{{n}+\mathrm{1}} \:\frac{{e}^{−{n}} }{{x}+\mathrm{1}}{dx} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:{e}^{−{n}} \left[{ln}\left({x}+\mathrm{1}\right)\right]_{{n}} ^{{n}+\mathrm{1}} \:=\sum_{{n}=\mathrm{1}} ^{\infty} \:{e}^{−{n}} \left\{{ln}\left({n}+\mathrm{1}\right)−{ln}\left({n}\right)\right\} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:{e}^{−{n}} {ln}\left(\frac{{n}+\mathrm{1}}{{n}}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:{e}^{−{n}} {ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)\:\:{and}\:{this}\:{serie}\:{is} \\ $$$${convergent}. \\ $$
Commented by mathmax by abdo last updated on 02/Apr/20
$${forgive}\:{the}\:{Q}\:{is}\:{calculate}\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{e}^{−\left[{x}\right]} }{{x}+\mathrm{1}}{dx} \\ $$