Menu Close

calculate-0-e-x-x-sinx-2-dx-




Question Number 78708 by abdomathmax last updated on 20/Jan/20
calculate ∫_0 ^∞  (e^(−x) /x)(sinx)^(2 ) dx
calculate0exx(sinx)2dx
Commented by mathmax by abdo last updated on 21/Jan/20
let f(t) =∫_0 ^∞   (e^(−xt) /x)sin^2 x dx  with t >0  we have  f^′ (t) =−∫_0 ^∞   e^(−xt) sin^2 xdx =−∫_0 ^∞  e^(−xt) (1−cos(2x))dx  =(1/2)∫_0 ^∞  e^(−xt)  cos(2x)dx−(1/2)∫_0 ^∞  e^(−xt)  dx  ∫_0 ^∞  e^(−xt) dx =[−(1/t)e^(−xt) ]_(x=0) ^∞  =(1/t)  ∫_0 ^∞  e^(−xt)  cos(2x)dx =Re(∫_0 ^∞  e^(−xt+2ix) dx)  ∫_0 ^∞  e^((−t+2i)x) dx =[(1/(−t+2i)) e^((−t+2i)x) ]_0 ^∞ =−(1/(−t+2i)) =(1/(t−2i)) =((t+2i)/(t^2  +4)) ⇒  ∫_0 ^∞  e^(−xt)  cos(2x)dx =(t/(t^2  +4)) ⇒2f^′ (t)=(t/(t^2  +4))−(1/t) ⇒  2f(t) =∫_1 ^t   (u/(u^2  +4))−∫_1 ^t  (du/u) +c =(1/2)[ln(u^2  +4)]_1 ^t −lnt  +c ⇒    f(t)=(1/4){ln(t^2  +4)−ln(5)} −(1/2)ln(t) +c  ∃m> /∫_0 ^∞ ∣((e^(−xt) sin^2 x)/x)∣dx≤m∫_0 ^∞ e^(−xt) dx =(m/t)→0(t→+∞) ⇒  lim_(t→+∞) f(t)=0 ⇒lim_(t→+∞) ln((((^4 (√(t^2  +1)))/( (√t)))) −(1/4)ln(5)+c =0 ⇒  c=(1/4)ln(5) ⇒f(t)=(1/4)ln(t^2  +4)−(1/2)ln(t)  (t>0)  ∫_0 ^∞   (e^(−x) /x)sin^2 x dx =f(1) =((ln(5))/4)
letf(t)=0extxsin2xdxwitht>0wehavef(t)=0extsin2xdx=0ext(1cos(2x))dx=120extcos(2x)dx120extdx0extdx=[1text]x=0=1t0extcos(2x)dx=Re(0ext+2ixdx)0e(t+2i)xdx=[1t+2ie(t+2i)x]0=1t+2i=1t2i=t+2it2+40extcos(2x)dx=tt2+42f(t)=tt2+41t2f(t)=1tuu2+41tduu+c=12[ln(u2+4)]1tlnt+cf(t)=14{ln(t2+4)ln(5)}12ln(t)+cm>/0extsin2xxdxm0extdx=mt0(t+)limt+f(t)=0limt+ln((4t2+1t)14ln(5)+c=0c=14ln(5)f(t)=14ln(t2+4)12ln(t)(t>0)0exxsin2xdx=f(1)=ln(5)4
Answered by mind is power last updated on 20/Jan/20
existence in 0 sin^2 (x)∼x^2   e^(−x) x  is integrable  in ∞   ((sin^2 (x))/x)<1⇒e^(−x) ((sin^2 (x))/x)<e^(−x)   obvious  let f(t)=∫_0 ^(+∞) (e^(−xt) /x)sin^2 (x)dx,t∈[1,∞[=I  f well definde C_∞   in I   lim_(t→∞) f(t)=0  proof  u=xt⇒∫_0 ^(+∞) (e^(−u) /u)sin^2 ((u/t))du  ∣sin((u/t))∣≤(u/t)⇒∫_0 ^(+∞) (e^(−u) /u)sin^2 ((u/t))du≤∫_0 ^(+∞) (e^(−u) /u)(u^2 /t^2 )du=(1/t^2 )∫_0 ^(+∞) ue^(−u) du=((Γ(1))/t^2 )  →0  as t→∞  (∂f/∂t)=∫_0 ^(+∞) −e^(−xt) sin^2 (x)dx=−∫_0 ^(+∞) e^(−xt) (((1−cos(2x))/2))dx  =−(1/2)∫_0 ^(+∞) e^(−xt) dx+(1/2)∫_0 ^(+∞) e^(−xt) cos(2x)dx  =(1/2)[(e^(−xt) /t)]_0 ^(+∞) +(1/2)Re{∫_0 ^(+∞) e^(x(−t+2i)) dt}  =−(1/(2t))+(1/2)Re[(e^(x(−t+2i)) /(−t+2i))]_0 ^(+∞)   =−(1/(2t))+(1/2)Re[(1/(t−2i))]  =−(1/(2t))+(1/2)(t/(t^2 +4))=f′(t)  f(1)=∫_∞ ^1 f′(t)dt=∫_∞ ^1 {−(1/(2t))+(t/(2(t^2 +4)))}dt=lim_(x→∞) [_x ^1 −(1/2)ln(t)+(1/4)ln(t^2 +4)]  =lim_(x→∞) [_x ^1 (1/4)ln(((t^2 +4)/t^2 ))]=((ln(5))/4)−lim_(x→∞) ((ln(((x^2 +4)/x^2 )))/4)=((ln(5))/4)
existencein0sin2(x)x2exxisintegrableinsin2(x)x<1exsin2(x)x<exobviousletf(t)=0+extxsin2(x)dx,t[1,[=IfwelldefindeCinIlimft(t)=0proofu=xt0+euusin2(ut)dusin(ut)∣⩽ut0+euusin2(ut)du0+euuu2t2du=1t20+ueudu=Γ(1)t20astft=0+extsin2(x)dx=0+ext(1cos(2x)2)dx=120+extdx+120+extcos(2x)dx=12[extt]0++12Re{0+ex(t+2i)dt}=12t+12Re[ex(t+2i)t+2i]0+=12t+12Re[1t2i]=12t+12tt2+4=f(t)f(1)=1f(t)dt=1{12t+t2(t2+4)}dt=limx[x112ln(t)+14ln(t2+4)]=limx[x114ln(t2+4t2)]=ln(5)4limxln(x2+4x2)4=ln(5)4
Commented by mathmax by abdo last updated on 20/Jan/20
thank you sir.
thankyousir.
Commented by mind is power last updated on 21/Jan/20
y′re welcom
yrewelcom
Answered by M±th+et£s last updated on 20/Jan/20
L{sin^2 (x)}=(1/2)L{(1−cos2x)}=(1/2){(1/s)−(s/(s^2 +4))}  F(s)=L{((sin^2 x U(x))/x)}=∫_s ^∞ (1/2){(1/s) −(s/(s^2 +4))}ds  =(1/2)[ln(s)−(1/2)ln(s^2 +4)]_s ^∞ =(1/4)[ln()]_s ^∞   =((−1)/4) ((s^2 /(s^2 +4)))  ∫_0 ^∞ ((sin^2 (x) e^(−x) )/x) = F(1)=−(1/4)ln((1/5))=(1/4) ln(5)
L{sin2(x)}=12L{(1cos2x)}=12{1sss2+4}F(s)=L{sin2xU(x)x}=s12{1sss2+4}ds=12[ln(s)12ln(s2+4)]s=14[ln()]s=14(s2s2+4)0sin2(x)exx=F(1)=14ln(15)=14ln(5)
Commented by M±th+et£s last updated on 20/Jan/20
so sorry there is a typo  (1/4)[ln((s^2 /(s^2 +4)))]_s ^∞
sosorrythereisatypo14[ln(s2s2+4)]s

Leave a Reply

Your email address will not be published. Required fields are marked *