Menu Close

calculate-0-ln-1-x-1-t-2-1-t-2-dt-with-x-gt-0-2-find-the-value-of-0-ln-2-t-2-1-t-2-dt-and-0-ln-3-2t-2-1-t-2-dt-




Question Number 116557 by Bird last updated on 04/Oct/20
calculate ∫_0 ^∞  ((ln(1+x(1+t^2 ))/(1+t^2 )) dt  with x>0  2) find the value of ∫_0 ^∞  ((ln(2+t^2 ))/(1+t^2 ))dt  and ∫_0 ^∞  ((ln(3+2t^2 ))/(1+t^2 ))dt
calculate0ln(1+x(1+t2)1+t2dtwithx>02)findthevalueof0ln(2+t2)1+t2dtand0ln(3+2t2)1+t2dt
Answered by mindispower last updated on 05/Oct/20
f(x)=∫_0 ^∞ ((ln(1+x(1+t^2 )))/(1+t^2 ))dt  f′(x)=∫_0 ^∞ (dt/(1+x(1+t^2 )))  =∫_0 ^∞ (dt/((1+x)(1+((t/( (√(1+x)))))^2 )))  =(1/( (√(1+x))))[tan^(−1) ((t/( (√(1+x)))))]_0 ^∞   =(π/(2(√(1+x))))   f(0)=0  f(x)=∫_0 ^x (π/(2(√(1+x))))=π(√(1+x))  ∫_0 ^∞ ((ln(2+t^2 ))/(1+t^2 ))dt=f(1)=π(√2)  ∫_0 ^∞ ((ln(3+2t^2 ))/(1+t^2 ))dt=f(2)=π(√3)
f(x)=0ln(1+x(1+t2))1+t2dtf(x)=0dt1+x(1+t2)=0dt(1+x)(1+(t1+x)2)=11+x[tan1(t1+x)]0=π21+xf(0)=0f(x)=0xπ21+x=π1+x0ln(2+t2)1+t2dt=f(1)=π20ln(3+2t2)1+t2dt=f(2)=π3
Commented by mathmax by abdo last updated on 05/Oct/20
thanks sir
thankssir
Commented by mathmax by abdo last updated on 05/Oct/20
(1+x)(1+((t/( (√(1+x)))))^2 ) =(1+x){1+(t^2 /(1+x))} =1+x +t^2  ≠1+x(1+t^2 ) !
(1+x)(1+(t1+x)2)=(1+x){1+t21+x}=1+x+t21+x(1+t2)!
Answered by mathmax by abdo last updated on 05/Oct/20
1) let f(x)=∫_0 ^∞  ((ln(1+x(1+t^2 )))/(1+t^2 ))dt  we have f^′ (x)=∫_0 ^∞   (dt/(1+x(1+t^2 )))  =∫_0 ^∞   (dt/(xt^2  +x+1)) =(1/x) ∫_0 ^∞   (dt/(t^2  +((x+1)/x))) =_(t=(√((x+1)/x))u)   (1/x).(x/(x+1))∫_0 ^∞   (1/(u^2  +1))((√(x+1))/( (√x)))du  =(1/( (√x)(√(x+1)))) ⇒ f(x) =∫ (dx/( (√x)(√(x+1)))) +c  =_((√x)=z)    ∫ ((2zdz)/(z(√(z^2 +1)))) +c =2 ∫ (dz/( (√(z^2  +1)))) +c  =2ln(z+(√(1+z^2 ))) +c =2ln((√x)+(√(1+x))) +c  f(0)=0 =2ln(1)+c =c ⇒f(x) =2ln((√x)+(√(1+x)))  2)∫_0 ^∞  ((ln(2+t^2 ))/(1+t^2 ))dt =f(1) =2ln(1+(√2))  ∫_0 ^∞   ((ln(3+2t^2 ))/(1+t^2 ))dt =f(2) =2ln((√2)+(√3))
1)letf(x)=0ln(1+x(1+t2))1+t2dtwehavef(x)=0dt1+x(1+t2)=0dtxt2+x+1=1x0dtt2+x+1x=t=x+1xu1x.xx+101u2+1x+1xdu=1xx+1f(x)=dxxx+1+c=x=z2zdzzz2+1+c=2dzz2+1+c=2ln(z+1+z2)+c=2ln(x+1+x)+cf(0)=0=2ln(1)+c=cf(x)=2ln(x+1+x)2)0ln(2+t2)1+t2dt=f(1)=2ln(1+2)0ln(3+2t2)1+t2dt=f(2)=2ln(2+3)

Leave a Reply

Your email address will not be published. Required fields are marked *