Question Number 79096 by mathmax by abdo last updated on 22/Jan/20
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{3}} }{dx} \\ $$
Commented by mind is power last updated on 22/Jan/20
$${sam}\:{idee}\:{will}\:{worck} \\ $$$${for} \\ $$$$\int_{\mathrm{0}} ^{+\infty} \frac{{ln}\left({x}\right)^{{p}} }{\left({x}+\mathrm{1}\right)^{{r}} }{dx} \\ $$$${withe}\:{r}>\mathrm{1},{p}\in\mathbb{N} \\ $$$${ln}\left({x}\right)^{{p}} =\frac{\partial^{{p}} }{\partial{t}^{{p}} }{x}^{{t}} \mid_{{t}=\mathrm{0}} \:\:\:{and}\:{sam}\:{idea}\:{like}\:{previous}\:{one} \\ $$$${but}\:{we}\:{will}\:{have}\:{mor}\:{complicated}\:{function}\:\Psi_{{p}} \left({x}\right)…. \\ $$
Answered by mind is power last updated on 22/Jan/20
$${ln}\left({x}\right)=\frac{{d}}{{dx}}{x}^{{t}} \mid_{{t}=\mathrm{0}} \\ $$$${f}\left({t}\right)=\int_{\mathrm{0}} ^{+\infty} \frac{{x}^{{t}} }{\left(\mathrm{1}+{x}\right)^{\mathrm{3}} }{dx},{we}\:{want}\:{f}'\left(\mathrm{0}\right) \\ $$$${x}={tg}^{\mathrm{2}} \left({y}\right)\Rightarrow \\ $$$${f}\left({t}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{tg}^{\mathrm{2}{t}} \left({y}\right)}{\left(\mathrm{1}+{tg}^{\mathrm{2}} \left({y}\right)\right)^{\mathrm{3}} }.\mathrm{2}\left(\mathrm{1}+{tg}^{\mathrm{2}} \left({y}\right)\right){tg}\left({y}\right){dy} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{tg}^{\mathrm{2}{t}+\mathrm{1}} \left({y}\right)}{\left(\mathrm{1}+{tg}^{\mathrm{2}} \left({y}\right)\right)^{\mathrm{2}} }{dy} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}{t}+\mathrm{1}} \left({y}\right){cos}^{−\mathrm{2}{t}+\mathrm{3}} \left({y}\right){dy} \\ $$$$=\beta\left({t}+\mathrm{1},−{t}+\mathrm{2}\right)=\frac{\Gamma\left({t}+\mathrm{1}\right)\Gamma\left(\mathrm{2}−{t}\right)}{\Gamma\left(\mathrm{3}\right)}=\frac{\Gamma\left({t}+\mathrm{1}\right)\Gamma\left(\mathrm{2}−{t}\right)}{\mathrm{2}} \\ $$$${f}\left({t}\right)=\frac{\Gamma\left({t}+\mathrm{1}\right)\Gamma\left(\mathrm{2}−{t}\right)}{\mathrm{2}} \\ $$$${f}'\left({t}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left\{\Gamma'\left({t}+\mathrm{1}\right)\Gamma\left(\mathrm{2}−{t}\right)−\Gamma'\left(\mathrm{2}−{t}\right)\Gamma\left({t}+\mathrm{1}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\Psi\left({t}+\mathrm{1}\right)\Gamma\left({t}+\mathrm{1}\right)\Gamma\left(\mathrm{2}−{t}\right)−\Psi\left(\mathrm{2}−{t}\right)\Gamma\left(\mathrm{2}−{t}\right)\Gamma\left({t}+\mathrm{1}\right)\right\} \\ $$$${f}'\left(\mathrm{0}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left\{\Psi\left(\mathrm{1}\right)−\Psi\left(\mathrm{2}\right)\right\}=\frac{\mathrm{1}}{\mathrm{2}}\left\{−\gamma−\left(\mathrm{1}−\gamma\right)\right\}=−\frac{\mathrm{1}}{\mathrm{2}}=−\mathrm{0}.\mathrm{5} \\ $$$$ \\ $$
Commented by msup trace by abdo last updated on 23/Jan/20
$${thank}\:{you}\:{sir}\:{now}\:{try}\:{to}\:{solve}\:{it} \\ $$$${complex}\:{analysis}… \\ $$