Menu Close

calculate-0-ln-x-x-2-x-1-dx-




Question Number 55457 by maxmathsup by imad last updated on 24/Feb/19
calculate ∫_0 ^∞    ((ln(x))/(x^2 +x+1))dx .
calculate0ln(x)x2+x+1dx.
Commented by maxmathsup by imad last updated on 05/Mar/19
let I =∫_0 ^∞  ((ln(x))/(x^2  +x+1))dx   ⇒I =∫_0 ^∞  ((lnx)/((x+(1/2))^2  +(3/4)))dx  =_(x+(1/2)=((√3)/2)t)     ∫_(1/( (√3))) ^(+∞)  ((ln(((√3)/2)t−(1/2)))/((3/4)(1+t^2 ))) ((√3)/2)dt =(4/3) ((√3)/2) ∫_(1/( (√3))) ^(+∞)   ((ln(((√3)/2)t−(1/2)))/(1+t^2 ))dt  =(2/( (√3))) ∫_(1/( (√3))) ^(+∞)   ((ln(((√3)/2)t−(1/2)))/(t^2  +1))dt ⇒ I =(2/( (√3))) ∫_(1/( (√3))) ^(+∞)   ((ln(((√3)/2)x−(1/2)))/(x^2  +1))dx let   f(t) =∫_(1/( (√3))) ^(+∞)   ((ln(tx−1))/(x^2  +1))dx ⇒f^′ (t) =∫_(1/( (√3))) ^(+∞)     (x/((tx−1)(x^2  +1)))dx let decompise  F(x) =(x/((tx−1)(x^2  +1))) ⇒F(x)=(a/(tx−1)) +((bx +c)/(x^2  +1))  a =lim_(x→(1/t))    (tx−1)F(x) =(1/(t((1/t^2 ) +1))) =(1/(t+(1/t))) =(t/(t^2  +1))  lim_(x→+∞) xF(x)=(a/t) +b =0 ⇒b =−(a/t) =−(1/(t^2  +1)) ⇒  F(x) =(t/((t^2  +1)(tx−1))) +((−(1/(t^2  +1))x+c)/(x^2  +1))  F(0) =0 =−(t/(t^2  +1)) +c ⇒c =(t/(t^2  +1)) ⇒  F(x) =(t/((t^2  +1)(tx−1))) +(1/(t^2  +1)) ((−x+t)/(x^2  +1)) ⇒  ∫ F(x)dx =(1/(t^2  +1))ln∣tx−1∣−(1/(2(t^2  +1)))ln(x^2  +1) +(t/(t^2  +1)) arctan(x) +c ⇒  ∫_(1/( (√3))) ^(+∞)  F(x)dx =(1/(t^2  +1))[ln∣((tx−1)/( (√(x^2  +1))))∣]_(1/( (√3))) ^(+∞)   +(t/(t^2  +1))[arctant]_(1/( (√3))) ^(+∞)   =(1/(t^2  +1)){ln∣t∣−ln∣(((t/( (√3)))−1)/(2/( (√3))))∣} +(t/(t^2  +1)){(π/2) −(π/6)}  =(1/(t^2  +1)){ln∣t∣−ln∣((t−(√3))/2)∣} +((πt)/(3(t^2  +1))) =f^′ (t) ⇒  f(t) =∫ ((ln∣t∣)/(t^2  +1))dt−∫  ((ln∣t−(√3))−ln(2))/(t^2  +1)) dt  +(π/6)ln(t^2  +1) +C  =∫  ((ln∣t∣)/(t^2  +1))dt   −∫((ln∣t−(√3)∣)/(t^2  +1))dt+ln(2)arctant +C ....be continued....
letI=0ln(x)x2+x+1dxI=0lnx(x+12)2+34dx=x+12=32t13+ln(32t12)34(1+t2)32dt=433213+ln(32t12)1+t2dt=2313+ln(32t12)t2+1dtI=2313+ln(32x12)x2+1dxletf(t)=13+ln(tx1)x2+1dxf(t)=13+x(tx1)(x2+1)dxletdecompiseF(x)=x(tx1)(x2+1)F(x)=atx1+bx+cx2+1a=limx1t(tx1)F(x)=1t(1t2+1)=1t+1t=tt2+1limx+xF(x)=at+b=0b=at=1t2+1F(x)=t(t2+1)(tx1)+1t2+1x+cx2+1F(0)=0=tt2+1+cc=tt2+1F(x)=t(t2+1)(tx1)+1t2+1x+tx2+1F(x)dx=1t2+1lntx112(t2+1)ln(x2+1)+tt2+1arctan(x)+c13+F(x)dx=1t2+1[lntx1x2+1]13++tt2+1[arctant]13+=1t2+1{lntlnt3123}+tt2+1{π2π6}=1t2+1{lntlnt32}+πt3(t2+1)=f(t)f(t)=lntt2+1dtlnt3)ln(2)t2+1dt+π6ln(t2+1)+C=lntt2+1dtlnt3t2+1dt+ln(2)arctant+C.becontinued.
Commented by Abdo msup. last updated on 05/Mar/19
let try another way we have I =∫_0 ^∞  (((1−x)lnx)/(1−x^3 ))dx  = ∫_0 ^1   (((1−x)ln(x))/(1−x^3 ))dx +∫_1 ^(+∞)  (((1−x)ln(x))/(1−x^3 ))dx but  ∫_1 ^∞   (((1−x)ln(x))/(1−x^3 ))dx =_(x=(1/t))     −∫_0 ^1  (((1−(1/t))(−ln(t)))/(1−(1/t^3 ))) (((−dt)/t^2 ))  =−∫_0 ^1      (((t−1)ln(t))/(t^3 −1))dt =∫_0 ^1   (((t−1)ln(t))/(1−t^3 )) dt  =−∫_0 ^1 (((1−t)ln(t))/(1−t^3 ))dt ⇒ I =0
lettryanotherwaywehaveI=0(1x)lnx1x3dx=01(1x)ln(x)1x3dx+1+(1x)ln(x)1x3dxbut1(1x)ln(x)1x3dx=x=1t01(11t)(ln(t))11t3(dtt2)=01(t1)ln(t)t31dt=01(t1)ln(t)1t3dt=01(1t)ln(t)1t3dtI=0

Leave a Reply

Your email address will not be published. Required fields are marked *