calculate-0-ln-x-x-2-x-1-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 55457 by maxmathsup by imad last updated on 24/Feb/19 calculate∫0∞ln(x)x2+x+1dx. Commented by maxmathsup by imad last updated on 05/Mar/19 letI=∫0∞ln(x)x2+x+1dx⇒I=∫0∞lnx(x+12)2+34dx=x+12=32t∫13+∞ln(32t−12)34(1+t2)32dt=4332∫13+∞ln(32t−12)1+t2dt=23∫13+∞ln(32t−12)t2+1dt⇒I=23∫13+∞ln(32x−12)x2+1dxletf(t)=∫13+∞ln(tx−1)x2+1dx⇒f′(t)=∫13+∞x(tx−1)(x2+1)dxletdecompiseF(x)=x(tx−1)(x2+1)⇒F(x)=atx−1+bx+cx2+1a=limx→1t(tx−1)F(x)=1t(1t2+1)=1t+1t=tt2+1limx→+∞xF(x)=at+b=0⇒b=−at=−1t2+1⇒F(x)=t(t2+1)(tx−1)+−1t2+1x+cx2+1F(0)=0=−tt2+1+c⇒c=tt2+1⇒F(x)=t(t2+1)(tx−1)+1t2+1−x+tx2+1⇒∫F(x)dx=1t2+1ln∣tx−1∣−12(t2+1)ln(x2+1)+tt2+1arctan(x)+c⇒∫13+∞F(x)dx=1t2+1[ln∣tx−1x2+1∣]13+∞+tt2+1[arctant]13+∞=1t2+1{ln∣t∣−ln∣t3−123∣}+tt2+1{π2−π6}=1t2+1{ln∣t∣−ln∣t−32∣}+πt3(t2+1)=f′(t)⇒f(t)=∫ln∣t∣t2+1dt−∫ln∣t−3)−ln(2)t2+1dt+π6ln(t2+1)+C=∫ln∣t∣t2+1dt−∫ln∣t−3∣t2+1dt+ln(2)arctant+C….becontinued…. Commented by Abdo msup. last updated on 05/Mar/19 lettryanotherwaywehaveI=∫0∞(1−x)lnx1−x3dx=∫01(1−x)ln(x)1−x3dx+∫1+∞(1−x)ln(x)1−x3dxbut∫1∞(1−x)ln(x)1−x3dx=x=1t−∫01(1−1t)(−ln(t))1−1t3(−dtt2)=−∫01(t−1)ln(t)t3−1dt=∫01(t−1)ln(t)1−t3dt=−∫01(1−t)ln(t)1−t3dt⇒I=0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-120993Next Next post: Q-use-the-parseval-relation-of-hankel-transfrom-to-evaluate-the-Integral-0-J-1-ar-J-1-br-r-for-gt-1-2-0-lt-a-lt-b-where-J-n-x Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.