calculate-0-lnx-1-x-2-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 82755 by mathmax by abdo last updated on 23/Feb/20 calculate∫0∞lnx(1+x2)2dx Commented by Ajao yinka last updated on 24/Feb/20 0 Commented by mathmax by abdo last updated on 24/Feb/20 letf(a)=∫0∞lnxa+x2dxwitha>0wecanverifyeazlythatfisderivableon]0,+∞[andf′(a)=−∫0∞lnx(a+x2)2dx⇒∫0∞lnx(a+x2)2dx=−f′(a)letexplicitfchangementx=atgivef(a)=∫0∞ln(at)a(1+t2)adt=1a∫0∞12lna+lntt2+1dt=12lnaa×π2+1a∫0∞lnt1+t2dtbut∫0∞ln(t)1+t2dt=0((putt=1u)⇒f(a)=πlna4a⇒f′(a)=π4{aa−lna×12aa}=π4aa−π4×lna2aa⇒∫0∞lnx(a+x2)2dx=−π4aa+πlna8aaa=1⇒∫0∞lnx(1+x2)2dx=−π4 Answered by mind is power last updated on 24/Feb/20 ∫0+∞ln(t)(1+t2)ndt=A(n)ln(t)=∂∂xtx∣x=0A=∂∂x∫0+∞tx(1+t2)ndt∣x=0=∂∂x∫0π2tgx(t)(1+tg2(t))n(1+tg2(t))dt∣x=0=∂∂x∫0π2tgx(t)(1+tg2(t))ndt∣x=0=12∂∂x.2∫0π2sinx(t)cos−x+2n(t)dt∣x=0=12∂∂xβ(x2+12;−x2+n+12)∣x=0=12∂∂xΓ(x2+12)Γ(n+12−x2)Γ(n+1)∣x=0=12∂∂xΓ(x2+12)Γ(n+12−x2)n!∣x=0Γ(n+12−x2)=Γ(12−x2)∏n−1k=0(k+12−x2)=12.∂∂xΓ(x2+12)Γ(12−x2)n!.∏n−1k=0(k+12−x2)∣x=0=12(n!)∂∂x.πsin(π2(x+1)).∏n−1k=0(k+12−x2)∣x=0f(x)=∏n−1k=0(k+12−x2)ln(f(x))=∑n−1k=0ln(k+12−x2)⇒f′(0)f(0)=−∑n−1k=012(k+12)=−∑n−1k=012k+1=∑nk=112k−∑2nk=11k=Hn2−H2nf(0)=∏n−1k=0(k+12)=(2n−1)!!2n=(2n)!22n.n!⇒f′(0)=(2n)!22nn!.(Hn2−H2n)A(n)=(2n)!22n+1(n!)2(Hn2−H2n)π=∫0+∞ln(x)(1+x2)ndxn=2⇒∫0+∞ln(x)(1+x2)2dx=A(2)A(2)=4!25(2!)2(−1−13)π=2432.4.−43π=−832.π=−π4 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-148284Next Next post: 0-2a-xy-dx-where-x-2-y-2-a-2-and-y-0- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.