Menu Close

calculate-0-lnx-1-x-2-2-dx-




Question Number 82755 by mathmax by abdo last updated on 23/Feb/20
calculate ∫_0 ^∞   ((lnx)/((1+x^2 )^2 ))dx
calculate0lnx(1+x2)2dx
Commented by Ajao yinka last updated on 24/Feb/20
0
Commented by mathmax by abdo last updated on 24/Feb/20
let f(a) =∫_0 ^∞   ((lnx)/(a+x^2 ))dx  with a>0  we can verify eazly that f is  derivable on ]0,+∞[ and f^′ (a) =−∫_0 ^∞  ((lnx)/((a+x^2 )^2 ))dx ⇒  ∫_0 ^∞  ((lnx)/((a+x^2 )^2 ))dx =−f^′ (a) let explicit f changement x=(√a)t give  f(a) =∫_0 ^∞  ((ln((√a)t))/(a(1+t^2 )))(√a)dt =(1/( (√a)))∫_0 ^∞   (((1/2)lna +lnt)/(t^2  +1))dt  =(1/2)((lna)/( (√a)))×(π/2) +(1/( (√a)))∫_0 ^∞  ((lnt)/(1+t^2 ))dt but ∫_0 ^∞  ((ln(t))/(1+t^2 ))dt =0((put t=(1/u)) ⇒  f(a) =((πlna)/(4(√a))) ⇒f^′ (a) =(π/4){((((√a)/a)−lna ×(1/(2(√a))))/a)}  =(π/(4a(√a)))−(π/4)×((lna)/(2a(√a))) ⇒∫_0 ^∞ ((lnx)/((a+x^2 )^2 ))dx =−(π/(4a(√a)))+((πlna)/(8a(√a)))  a=1 ⇒∫_0 ^∞   ((lnx)/((1+x^2 )^2 ))dx =−(π/4)
letf(a)=0lnxa+x2dxwitha>0wecanverifyeazlythatfisderivableon]0,+[andf(a)=0lnx(a+x2)2dx0lnx(a+x2)2dx=f(a)letexplicitfchangementx=atgivef(a)=0ln(at)a(1+t2)adt=1a012lna+lntt2+1dt=12lnaa×π2+1a0lnt1+t2dtbut0ln(t)1+t2dt=0((putt=1u)f(a)=πlna4af(a)=π4{aalna×12aa}=π4aaπ4×lna2aa0lnx(a+x2)2dx=π4aa+πlna8aaa=10lnx(1+x2)2dx=π4
Answered by mind is power last updated on 24/Feb/20
∫_0 ^(+∞) ((ln(t))/((1+t^2 )^n ))dt=A(n)  ln(t)=(∂/∂x)t^x ∣_(x=0)   A=(∂/∂x)∫_0 ^(+∞) (t^x /((1+t^2 )^n ))dt∣_(x=0)   =(∂/∂x)∫_0 ^(π/2) ((tg^x (t))/((1+tg^2 (t))^n ))(1+tg^2 (t))dt∣_(x=0)   =(∂/∂x)∫_0 ^(π/2) ((tg^x (t))/((1+tg^2 (t))^n ))dt∣_(x=0)   =(1/2)(∂/∂x).2∫_0 ^(π/2) sin^x (t)cos^(−x+2n) (t)dt∣_(x=0)   =(1/2)(∂/∂x)β((x/2)+(1/2);−(x/2) +n+(1/2))∣_(x=0)   =(1/2)(∂/∂x)((Γ((x/2)+(1/2))Γ(n+(1/2)−(x/2)))/(Γ(n+1)))∣_(x=0) =(1/2)(∂/∂x)((Γ((x/2)+(1/2))Γ(n+(1/2)−(x/2)))/(n!))∣_(x=0)   Γ(n+(1/2)−(x/2))=Γ((1/2)−(x/2))Π_(k=0) ^(n−1) (k+(1/2)−(x/2))  =(1/2).(∂/∂x)((Γ((x/2)+(1/2))Γ((1/2)−(x/2)))/(n!)).Π_(k=0) ^(n−1) (k+(1/2)−(x/2))∣_(x=0)   =(1/(2(n!)))(∂/∂x).(π/(sin((π/2)(x+1)))).Π_(k=0) ^(n−1) (k+(1/2)−(x/2))∣_(x=0)   f(x)=Π_(k=0) ^(n−1) (k+(1/2)−(x/2))  ln(f(x))=Σ_(k=0) ^(n−1) ln(k+(1/2)−(x/2))  ⇒((f′(0))/(f(0)))=−Σ_(k=0) ^(n−1) (1/(2(k+(1/2))))=−Σ_(k=0) ^(n−1) (1/(2k+1))  =Σ_(k=1) ^n (1/(2k))−Σ_(k=1) ^(2n) (1/k)=(H_n /2)−H_(2n)   f(0)=Π_(k=0) ^(n−1) (k+(1/2))=(((2n−1)!!)/2^n )=(((2n)!)/(2^(2n) .n!))  ⇒f′(0)=(((2n)!)/(2^(2n) n!)).((H_n /2)−H_(2n) )  A(n)=(((2n)!)/(2^(2n+1) (n!)^2 ))((H_n /2)−H_(2n) )π=∫_0 ^(+∞) ((ln(x))/((1+x^2 )^n ))dx  n=2⇒∫_0 ^(+∞) ((ln(x))/((1+x^2 )^2 ))dx=A(2)  A(2)=((4!)/(2^5 (2!)^2 ))(−1−(1/3))π=((24)/(32.4)).((−4)/3)π=((−8)/(32)).π=−(π/4)
0+ln(t)(1+t2)ndt=A(n)ln(t)=xtxx=0A=x0+tx(1+t2)ndtx=0=x0π2tgx(t)(1+tg2(t))n(1+tg2(t))dtx=0=x0π2tgx(t)(1+tg2(t))ndtx=0=12x.20π2sinx(t)cosx+2n(t)dtx=0=12xβ(x2+12;x2+n+12)x=0=12xΓ(x2+12)Γ(n+12x2)Γ(n+1)x=0=12xΓ(x2+12)Γ(n+12x2)n!x=0Γ(n+12x2)=Γ(12x2)n1k=0(k+12x2)=12.xΓ(x2+12)Γ(12x2)n!.n1k=0(k+12x2)x=0=12(n!)x.πsin(π2(x+1)).n1k=0(k+12x2)x=0f(x)=n1k=0(k+12x2)ln(f(x))=n1k=0ln(k+12x2)f(0)f(0)=n1k=012(k+12)=n1k=012k+1=nk=112k2nk=11k=Hn2H2nf(0)=n1k=0(k+12)=(2n1)!!2n=(2n)!22n.n!f(0)=(2n)!22nn!.(Hn2H2n)A(n)=(2n)!22n+1(n!)2(Hn2H2n)π=0+ln(x)(1+x2)ndxn=20+ln(x)(1+x2)2dx=A(2)A(2)=4!25(2!)2(113)π=2432.4.43π=832.π=π4

Leave a Reply

Your email address will not be published. Required fields are marked *