calculate-0-lnx-x-1-4-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 98884 by mathmax by abdo last updated on 16/Jun/20 calculate∫0∞lnx(x+1)4dx Answered by mathmax by abdo last updated on 17/Jun/20 I=∫0∞lnx(x+1)4dx⇒I=∫01lnx(1+x)4dx+∫1∞lnx(1+x)4dx(→x=1t)=∫01lnx(1+x)4+−∫01−lnt(1+1t)4(−dtt2)=∫01lnx(1+x)4−∫01t2lnt(1+t)4dt=∫01(1−x2)lnx(1+x)4dxwehave11+x=∑n=0∞(−1)nxn⇒−1(1+x)2=∑n=1∞n(−1)nxn−1=∑n=0∞(n+1)(−1)n+1xn⇒1(1+x)2=∑n=0∞(n+1)(−1)nxn⇒−2(1+x)(1+x)4=∑n=1∞n(n+1)(−1)nxn−1⇒−2(1+x)3=∑n=0∞(n+1)(n+2)(−1)n+1xn⇒2(1+x)3=∑n=0∞(n+1)(n+2)(−1)nxn⇒−2.3(1+x)2(1+x)6=∑n=1∞n(n+1)(n+2)(−1)nxn−1⇒−6(1+x)4=∑n=0∞(n+1)(n+2)(n+3)(−1)n+1xn⇒6(1+x)4=∑n=0∞(n+1)(n+2)(n+3)(−1)nxn=∑n=0∞(n2+3n+2)(n+3)(−1)nxn=∑n=0∞(n3+3n2+3n2+9n+2n+3)(−1)nxn=∑n=0∞(n3+6n2+11n+3)(−1)nxn⇒6∫01(1−x2)lnx(1+x)4dx=6∫01∑n=0∞(n3+6n2+11n+3)(−1)nxn(1−x2)lnxdx=6∑n=0∞(n3+6n2+11n+3)(−1)n∫01(xn−xn+2)lnxdxbyparts∫01(xn−xn+2)lnxdx=[(xn+1n+1−xn+3n+3)lnx]01−∫01(xnn+1−xn+2n+3)dx=−1(n+1)2+1(n+3)2⇒6∫01(1−x2)lnx(1+x)4dx=6∑n=0∞(n3+6n2+11n+3)(−1)n(1(n+3)2−1(n+1)2)…becontinued… Answered by maths mind last updated on 18/Jun/20 letf(n)=∫0+∞ln(x)(x+1)ndx….cvforn⩾2wewantf(4)f(n+1)=∫0+∞ln(x)dx(1+x)n+1=[xln(x)−x(1+x)n+1]0+∞−(n+1)∫0+∞xln(x)−x(1+x)n+2dx⇒∫0+∞ln(x)dx(1+x)n+1=−(n+1)∫0+∞{ln(x)(1+x)n+1−ln(x)(1+x)n+2}dx+(n+1)∫0+∞(1(1+x)n+1−1(1+x)n+2)dx⇒f(n+1)=−(n+1)f(n+1)+(n+1)f(n+2)+(n+1)[−1n(1+x)n+1(n+1)(1+x)n+1]0+∞⇒(n+2)f(n+1)=(n+1)f(n+2)+(n+1)(1n−1n+1)⇒(n+1)f(n)=nf(n+1)+1n−1⇒f(n)n=f(n+1)n+1+1n(n−1)(n+1)⇒∑k⩾2(f(k+1)k+1−f(k)k)=∑k⩾21k(k−1)(k+1)⇒f(n)n−f(2)2=∑n−1k=2.1(k−1)k(k+1)=∑n−1k=2(12(k−1)−1k+12(k+1))=−12(n−1)+12−14+12n=−2n+n(n−1)+2(n−1)4n(n−1)=n2−n−24n(n−1)f(2)=∫0+∞ln(x)(1+x)2dx=∫∞0ln(1x)x2(1+x)2.−dxx2⇒f(2)=0f(n)n=n2−n−24n(n−1)⇒f(n)=n2−n−24(n−1)∫0+∞ln(x)dx(1+x)4=f(4)=42−4−24(4−1)=104.3=56 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: prove-that-0-x-x-ln-e-x-1-dx-n-1-1-n-3-Next Next post: prove-that-0-1-lnx-p-1-x-2-p-n-0-1-n-2n-1-p-1-p-integr- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.