Menu Close

calculate-0-lnx-x-1-4-dx-




Question Number 98884 by mathmax by abdo last updated on 16/Jun/20
calculate ∫_0 ^∞  ((lnx)/((x+1)^4 ))dx
calculate0lnx(x+1)4dx
Answered by mathmax by abdo last updated on 17/Jun/20
I =∫_0 ^∞  ((lnx)/((x+1)^4 ))dx ⇒ I =∫_0 ^1  ((lnx)/((1+x)^4 ))dx +∫_1 ^∞  ((lnx)/((1+x)^4 ))dx(→x=(1/t))  =∫_0 ^1  ((lnx)/((1+x)^4 )) +−∫_0 ^1  ((−lnt)/((1+(1/t))^4 ))(((−dt)/t^2 ))=∫_0 ^1  ((lnx)/((1+x)^4 )) −∫_0 ^1  ((t^2 lnt)/((1+t)^4 ))dt  =∫_0 ^1 (((1−x^2 )lnx)/((1+x)^4 )) dx  we have  (1/(1+x)) =Σ_(n=0) ^∞  (−1)^n  x^n  ⇒  −(1/((1+x)^2 )) =Σ_(n=1) ^∞ n(−1)^n  x^(n−1)  =Σ_(n=0) ^∞ (n+1)(−1)^(n+1)  x^n  ⇒  (1/((1+x)^2 )) =Σ_(n=0) ^∞  (n+1)(−1)^n  x^n  ⇒−((2(1+x))/((1+x)^4 )) =Σ_(n=1) ^∞ n(n+1)(−1)^n  x^(n−1)  ⇒  −(2/((1+x)^3 )) =Σ_(n=0) ^∞ (n+1)(n+2)(−1)^(n+1) x^n  ⇒  (2/((1+x)^3 )) =Σ_(n=0) ^∞  (n+1)(n+2)(−1)^n  x^n  ⇒  −((2.3(1+x)^2 )/((1+x)^6 )) =Σ_(n=1) ^∞ n(n+1)(n+2)(−1)^n  x^(n−1)  ⇒  −(6/((1+x)^4 )) =Σ_(n=0) ^∞  (n+1)(n+2)(n+3)(−1)^(n+1) x^n  ⇒  (6/((1+x)^4 )) =Σ_(n=0) ^∞  (n+1)(n+2)(n+3)(−1)^n  x^n    =Σ_(n=0) ^∞ (n^2 +3n +2)(n+3)(−1)^n  x^n   =Σ_(n=0) ^∞  (n^3 +3n^2 +3n^2 +9n +2n+3)(−1)^n  x^n   =Σ_(n=0) ^∞  (n^3 +6n^2 +11n +3)(−1)^n  x^n  ⇒  6 ∫_0 ^1  (((1−x^2 )lnx)/((1+x)^4 ))dx =6 ∫_0 ^1 Σ_(n=0) ^∞ (n^3 +6n^2  +11n +3)(−1)^n x^n (1−x^2 )lnx dx  =6Σ_(n=0) ^∞  (n^3  +6n^2  +11n +3)(−1)^n  ∫_0 ^1 (x^n  −x^(n+2) )lnx dx  by parts ∫_0 ^1 (x^n −x^(n+2) )lnx dx =[((x^(n+1) /(n+1))−(x^(n+3) /(n+3)))lnx]_0 ^1 −∫_0 ^1 ((x^n /(n+1))−(x^(n+2) /(n+3)))dx  =−(1/((n+1)^2 )) +(1/((n+3)^2 )) ⇒  6 ∫_0 ^1  (((1−x^2 )lnx)/((1+x)^4 )) dx =6 Σ_(n=0) ^∞  (n^3 +6n^2  +11n +3)(−1)^n ((1/((n+3)^2 ))−(1/((n+1)^2 )))   ...be continued...
I=0lnx(x+1)4dxI=01lnx(1+x)4dx+1lnx(1+x)4dx(x=1t)=01lnx(1+x)4+01lnt(1+1t)4(dtt2)=01lnx(1+x)401t2lnt(1+t)4dt=01(1x2)lnx(1+x)4dxwehave11+x=n=0(1)nxn1(1+x)2=n=1n(1)nxn1=n=0(n+1)(1)n+1xn1(1+x)2=n=0(n+1)(1)nxn2(1+x)(1+x)4=n=1n(n+1)(1)nxn12(1+x)3=n=0(n+1)(n+2)(1)n+1xn2(1+x)3=n=0(n+1)(n+2)(1)nxn2.3(1+x)2(1+x)6=n=1n(n+1)(n+2)(1)nxn16(1+x)4=n=0(n+1)(n+2)(n+3)(1)n+1xn6(1+x)4=n=0(n+1)(n+2)(n+3)(1)nxn=n=0(n2+3n+2)(n+3)(1)nxn=n=0(n3+3n2+3n2+9n+2n+3)(1)nxn=n=0(n3+6n2+11n+3)(1)nxn601(1x2)lnx(1+x)4dx=601n=0(n3+6n2+11n+3)(1)nxn(1x2)lnxdx=6n=0(n3+6n2+11n+3)(1)n01(xnxn+2)lnxdxbyparts01(xnxn+2)lnxdx=[(xn+1n+1xn+3n+3)lnx]0101(xnn+1xn+2n+3)dx=1(n+1)2+1(n+3)2601(1x2)lnx(1+x)4dx=6n=0(n3+6n2+11n+3)(1)n(1(n+3)21(n+1)2)becontinued
Answered by maths mind last updated on 18/Jun/20
let   f(n)=∫_0 ^(+∞) ((ln(x))/((x+1)^n ))dx....cv for n≥2  we want f(4)  f(n+1)=∫_0 ^(+∞) ((ln(x)dx)/((1+x)^(n+1) ))  =[((xln(x)−x)/((1+x)^(n+1) ))]_0 ^(+∞) −(n+1)∫_0 ^(+∞) ((xln(x)−x)/((1+x)^(n+2) ))dx  ⇒∫_0 ^(+∞) ((ln(x)dx)/((1+x)^(n+1) ))=−(n+1)∫_0 ^(+∞) {((ln(x))/((1+x)^(n+1) )) −((ln(x))/((1+x)^(n+2) ))}dx  +(n+1)∫_0 ^(+∞) ((1/((1+x)^(n+1) ))−(1/((1+x)^(n+2) )))dx  ⇒f(n+1)=−(n+1)f(n+1)+(n+1)f(n+2)+(n+1)[((−1)/(n(1+x)^n ))+(1/((n+1)(1+x)^(n+1) ))]_0 ^(+∞)   ⇒(n+2)f(n+1)=(n+1)f(n+2)+(n+1)((1/n)−(1/(n+1)))  ⇒(n+1)f(n)=nf(n+1)+(1/(n−1))  ⇒((f(n))/n)=((f(n+1))/(n+1))+(1/(n(n−1)(n+1)))  ⇒Σ_(k≥2) (((f(k+1))/(k+1))−((f(k))/k))=Σ_(k≥2) (1/(k(k−1)(k+1)))  ⇒((f(n))/n)−((f(2))/2)=Σ_(k=2) ^(n−1) .(1/((k−1)k(k+1)))=Σ_(k=2) ^(n−1) ((1/(2(k−1)))−(1/k)+(1/(2(k+1))))  =−(1/(2(n−1)))+(1/2)−(1/4)+(1/(2n))=((−2n+n(n−1)+2(n−1))/(4n(n−1)))=((n^2 −n−2)/(4n(n−1)))  f(2)=∫_0 ^(+∞) ((ln(x))/((1+x)^2 ))dx=∫_∞ ^0 ((ln((1/x))x^2 )/((1+x)^2 )).((−dx)/x^2 )⇒f(2)=0  ((f(n))/n)=((n^2 −n−2)/(4n(n−1)))⇒f(n)=((n^2 −n−2)/(4(n−1)))  ∫_0 ^(+∞) ((ln(x)dx)/((1+x)^4 ))=f(4)=((4^2 −4−2)/(4(4−1)))=((10)/(4.3))=(5/6)
letf(n)=0+ln(x)(x+1)ndx.cvforn2wewantf(4)f(n+1)=0+ln(x)dx(1+x)n+1=[xln(x)x(1+x)n+1]0+(n+1)0+xln(x)x(1+x)n+2dx0+ln(x)dx(1+x)n+1=(n+1)0+{ln(x)(1+x)n+1ln(x)(1+x)n+2}dx+(n+1)0+(1(1+x)n+11(1+x)n+2)dxf(n+1)=(n+1)f(n+1)+(n+1)f(n+2)+(n+1)[1n(1+x)n+1(n+1)(1+x)n+1]0+(n+2)f(n+1)=(n+1)f(n+2)+(n+1)(1n1n+1)(n+1)f(n)=nf(n+1)+1n1f(n)n=f(n+1)n+1+1n(n1)(n+1)k2(f(k+1)k+1f(k)k)=k21k(k1)(k+1)f(n)nf(2)2=n1k=2.1(k1)k(k+1)=n1k=2(12(k1)1k+12(k+1))=12(n1)+1214+12n=2n+n(n1)+2(n1)4n(n1)=n2n24n(n1)f(2)=0+ln(x)(1+x)2dx=0ln(1x)x2(1+x)2.dxx2f(2)=0f(n)n=n2n24n(n1)f(n)=n2n24(n1)0+ln(x)dx(1+x)4=f(4)=42424(41)=104.3=56

Leave a Reply

Your email address will not be published. Required fields are marked *