Menu Close

calculate-0-lnx-x-1-6-dx-




Question Number 130135 by mathmax by abdo last updated on 22/Jan/21
calculate ∫_0 ^∞  ((lnx)/((x+1)^6 ))dx
calculate0lnx(x+1)6dx
Answered by Dwaipayan Shikari last updated on 22/Jan/21
I(a)=∫_0 ^∞ ((x^(a+1−1)  )/((1+x)^(6+a+1−a−1) ))dx ⇒I(a)=((Γ(a+1)Γ(5−a))/(Γ(6)))  I′(a)=(1/(120))(Γ′(a+1)Γ(5−a)−Γ′(5−a)Γ(a+1))  I′(0)=−(γ/5)−(1/(120))(−24γ+24(1+(1/2)+(1/3)+(1/4)))  =−(5/(12))  Means in  General ∫_0 ^∞ ((logx)/((1+x)^n ))dx=−(1/n)Σ_(n=1) ^(n−2) (1/n)
I(a)=0xa+11(1+x)6+a+1a1dxI(a)=Γ(a+1)Γ(5a)Γ(6)I(a)=1120(Γ(a+1)Γ(5a)Γ(5a)Γ(a+1))I(0)=γ51120(24γ+24(1+12+13+14))=512MeansinGeneral0logx(1+x)ndx=1nn2n=11n

Leave a Reply

Your email address will not be published. Required fields are marked *