Menu Close

calculate-0-lnx-x-2-x-1-2-dx-




Question Number 127236 by Bird last updated on 28/Dec/20
calculate ∫_0 ^∞  ((lnx)/((x^2  −x+1)^2 ))dx
calculate0lnx(x2x+1)2dx
Answered by mindispower last updated on 28/Dec/20
=∫_0 ^∞ ((ln(x)(1+x)^2 )/((x^3 +1)^2 ))dx=∫_0 ^∞ ((x^2 ln(x))/((1+x^3 )^2 ))+2∫_0 ^∞ ((ln(x).xdx)/((1+x^3 )^2 ))+∫((ln(x)dx)/((1+x^3 )^2 ))  =a+b+c  a=0:x→(1/x)⇒a=−a  c=  x=tg^(2/3) (t)⇒dx=(2/3)(1+tg^2 (t))tg^(−(1/3)) (t)dt  ⇔∫_0 ^(π/2) (2/3).((ln(tg(t)))/((1+tg^2 (t))^2 )).(2/3)(1+tg^2 (t)).tg^(−(1/3)) (t)dt  =(4/9)∫_0 ^(π/2) ((ln(tg(t)))/(1+tg^2 (t))).tg^(−(1/3)) dt  =(4/9)∫_0 ^(π/2) ((ln(sin(x))−ln(cos(x)))/(cos^(−(1/3)) (t)))sin^(−(1/3)) (t).cos^2 (t)dt  =(4/9).∫_0 ^(π/2) ln(sin(t))cos^(7/3) (t)sin^(−(1/3)) (t)−(4/9)∫_0 ^(π/2) ln(cos(t))cos^(7/3) (t)sin^(−(1/3)) (t)dt  =(1/9)(A−B)  β(x,y)=2∫_0 ^(π/2) cos(t)^(2x−1) sin^(2y−1) (t)dt  ∂_x β(x,y)=2.∫_0 ^(π/2) 2ln(cos(t))cos(t)^(2x−1) sin^(2y−1) (t)dt  A=(1/9)∂_y β(x,y)_((x,y)=((5/3),(1/3)))   B=(1/9)∂_x β(x,y)_((x,y)=((5/3),(1/3)))   ∂_x β(x,y)=β(x,y)[Ψ(x)−Ψ(x+y))  ((β((5/3),(1/3)))/9)(Ψ((1/3))−Ψ(2)−Ψ((5/3))+Ψ(2))  =((Γ((1/3))Γ((5/3)))/(9Γ(2)))(Ψ((1/3))−Ψ((5/3)))  =((Γ((1/3)).(2/3)Γ((2/3)))/(9Γ(2)))(Ψ((1/3))−(3/2)−Ψ((2/3)))  =(4/(27)).(π/( (√3)))(−(3/2)+πcot(((2π)/3)))=((4π)/(27(√3)))(−(3/2)−(π/( (√3))))  =((−2)/(81))π(3(√3)+2π)  b=(8/9)∫_0 ^(π/2) ln(tg(t))((sin^((2/3) ) (t))/(cos^(2/3) (t)))cos^2 (t).tg^(−(1/3)) (t)  =(8/9)(∫_0 ^(π/2) ln(sin(t))cos^(5/3) (t)sin^(1/3) (t)dt−∫_0 ^(π/2) ln(cos(t))cos^(5/3) (t)sin^(1/3) (t)dt)  =(2/9)(Ψ((2/3))−Ψ(2)−Ψ((4/3))−Ψ(2))β((2/3),(4/3))  =(2/9)(Ψ((2/3))−Ψ((4/3))).((Γ((2/3))Γ((4/3)))/(Γ(2)))  =(2/9)(Ψ((2/3))−3−Ψ((1/3))).(1/3)(π/(sin((π/3))))  =((2π)/(27))(πcot((π/3))−3).(2/( (√3)))=((4π)/(27(√3)))((π/( (√3)))−3).=((4π)/(81))(π−3(√3))  ∫_0 ^∞ ((ln(x))/((x^2 −x+1)^2 ))=((4π)/(81))(π−3(√3))−((2π)/(81))(3(√3)+2π)  =((−18π(√3))/(81))=((−2π(√3))/9)≈−1.2092
=0ln(x)(1+x)2(x3+1)2dx=0x2ln(x)(1+x3)2+20ln(x).xdx(1+x3)2+ln(x)dx(1+x3)2=a+b+ca=0:x1xa=ac=x=tg23(t)dx=23(1+tg2(t))tg13(t)dt0π223.ln(tg(t))(1+tg2(t))2.23(1+tg2(t)).tg13(t)dt=490π2ln(tg(t))1+tg2(t).tg13dt=490π2ln(sin(x))ln(cos(x))cos13(t)sin13(t).cos2(t)dt=49.0π2ln(sin(t))cos73(t)sin13(t)490π2ln(cos(t))cos73(t)sin13(t)dt=19(AB)β(x,y)=20π2cos(t)2x1sin2y1(t)dtxβ(x,y)=2.0π22ln(cos(t))cos(t)2x1sin2y1(t)dtA=19yβ(x,y)(x,y)=(53,13)B=19xβ(x,y)(x,y)=(53,13)xβ(x,y)=β(x,y)[Ψ(x)Ψ(x+y))β(53,13)9(Ψ(13)Ψ(2)Ψ(53)+Ψ(2))=Γ(13)Γ(53)9Γ(2)(Ψ(13)Ψ(53))=Γ(13).23Γ(23)9Γ(2)(Ψ(13)32Ψ(23))=427.π3(32+πcot(2π3))=4π273(32π3)=281π(33+2π)b=890π2ln(tg(t))sin23(t)cos23(t)cos2(t).tg13(t)=89(0π2ln(sin(t))cos53(t)sin13(t)dt0π2ln(cos(t))cos53(t)sin13(t)dt)=29(Ψ(23)Ψ(2)Ψ(43)Ψ(2))β(23,43)=29(Ψ(23)Ψ(43)).Γ(23)Γ(43)Γ(2)=29(Ψ(23)3Ψ(13)).13πsin(π3)=2π27(πcot(π3)3).23=4π273(π33).=4π81(π33)0ln(x)(x2x+1)2=4π81(π33)2π81(33+2π)=18π381=2π391.2092
Commented by mathmax by abdo last updated on 29/Dec/20
thank you sir for this hardwork
thankyousirforthishardwork
Commented by mindispower last updated on 29/Dec/20
withe pleasur
withepleasur

Leave a Reply

Your email address will not be published. Required fields are marked *