Question Number 127236 by Bird last updated on 28/Dec/20
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{lnx}}{\left({x}^{\mathrm{2}} \:−{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$
Answered by mindispower last updated on 28/Dec/20
$$=\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({x}\right)\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }{\left({x}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{2}} }{dx}=\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{2}} {ln}\left({x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{\mathrm{2}} }+\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({x}\right).{xdx}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{\mathrm{2}} }+\int\frac{{ln}\left({x}\right){dx}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{\mathrm{2}} } \\ $$$$={a}+{b}+{c} \\ $$$${a}=\mathrm{0}:{x}\rightarrow\frac{\mathrm{1}}{{x}}\Rightarrow{a}=−{a} \\ $$$${c}= \\ $$$${x}={tg}^{\frac{\mathrm{2}}{\mathrm{3}}} \left({t}\right)\Rightarrow{dx}=\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{1}+{tg}^{\mathrm{2}} \left({t}\right)\right){tg}^{−\frac{\mathrm{1}}{\mathrm{3}}} \left({t}\right){dt} \\ $$$$\Leftrightarrow\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{2}}{\mathrm{3}}.\frac{{ln}\left({tg}\left({t}\right)\right)}{\left(\mathrm{1}+{tg}^{\mathrm{2}} \left({t}\right)\right)^{\mathrm{2}} }.\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{1}+{tg}^{\mathrm{2}} \left({t}\right)\right).{tg}^{−\frac{\mathrm{1}}{\mathrm{3}}} \left({t}\right){dt} \\ $$$$=\frac{\mathrm{4}}{\mathrm{9}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{ln}\left({tg}\left({t}\right)\right)}{\mathrm{1}+{tg}^{\mathrm{2}} \left({t}\right)}.{tg}^{−\frac{\mathrm{1}}{\mathrm{3}}} {dt} \\ $$$$=\frac{\mathrm{4}}{\mathrm{9}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{ln}\left({sin}\left({x}\right)\right)−{ln}\left({cos}\left({x}\right)\right)}{{cos}^{−\frac{\mathrm{1}}{\mathrm{3}}} \left({t}\right)}{sin}^{−\frac{\mathrm{1}}{\mathrm{3}}} \left({t}\right).{cos}^{\mathrm{2}} \left({t}\right){dt} \\ $$$$=\frac{\mathrm{4}}{\mathrm{9}}.\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\left({t}\right)\right){cos}^{\frac{\mathrm{7}}{\mathrm{3}}} \left({t}\right){sin}^{−\frac{\mathrm{1}}{\mathrm{3}}} \left({t}\right)−\frac{\mathrm{4}}{\mathrm{9}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cos}\left({t}\right)\right){cos}^{\frac{\mathrm{7}}{\mathrm{3}}} \left({t}\right){sin}^{−\frac{\mathrm{1}}{\mathrm{3}}} \left({t}\right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{9}}\left({A}−{B}\right) \\ $$$$\beta\left({x},{y}\right)=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}\left({t}\right)^{\mathrm{2}{x}−\mathrm{1}} {sin}^{\mathrm{2}{y}−\mathrm{1}} \left({t}\right){dt} \\ $$$$\partial_{{x}} \beta\left({x},{y}\right)=\mathrm{2}.\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{2}{ln}\left({cos}\left({t}\right)\right){cos}\left({t}\right)^{\mathrm{2}{x}−\mathrm{1}} {sin}^{\mathrm{2}{y}−\mathrm{1}} \left({t}\right){dt} \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{9}}\partial_{{y}} \beta\left({x},{y}\right)_{\left({x},{y}\right)=\left(\frac{\mathrm{5}}{\mathrm{3}},\frac{\mathrm{1}}{\mathrm{3}}\right)} \\ $$$${B}=\frac{\mathrm{1}}{\mathrm{9}}\partial_{{x}} \beta\left({x},{y}\right)_{\left({x},{y}\right)=\left(\frac{\mathrm{5}}{\mathrm{3}},\frac{\mathrm{1}}{\mathrm{3}}\right)} \\ $$$$\partial_{{x}} \beta\left({x},{y}\right)=\beta\left({x},{y}\right)\left[\Psi\left({x}\right)−\Psi\left({x}+{y}\right)\right) \\ $$$$\frac{\beta\left(\frac{\mathrm{5}}{\mathrm{3}},\frac{\mathrm{1}}{\mathrm{3}}\right)}{\mathrm{9}}\left(\Psi\left(\frac{\mathrm{1}}{\mathrm{3}}\right)−\Psi\left(\mathrm{2}\right)−\Psi\left(\frac{\mathrm{5}}{\mathrm{3}}\right)+\Psi\left(\mathrm{2}\right)\right) \\ $$$$=\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\Gamma\left(\frac{\mathrm{5}}{\mathrm{3}}\right)}{\mathrm{9}\Gamma\left(\mathrm{2}\right)}\left(\Psi\left(\frac{\mathrm{1}}{\mathrm{3}}\right)−\Psi\left(\frac{\mathrm{5}}{\mathrm{3}}\right)\right) \\ $$$$=\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right).\frac{\mathrm{2}}{\mathrm{3}}\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)}{\mathrm{9}\Gamma\left(\mathrm{2}\right)}\left(\Psi\left(\frac{\mathrm{1}}{\mathrm{3}}\right)−\frac{\mathrm{3}}{\mathrm{2}}−\Psi\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\right) \\ $$$$=\frac{\mathrm{4}}{\mathrm{27}}.\frac{\pi}{\:\sqrt{\mathrm{3}}}\left(−\frac{\mathrm{3}}{\mathrm{2}}+\pi{cot}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)\right)=\frac{\mathrm{4}\pi}{\mathrm{27}\sqrt{\mathrm{3}}}\left(−\frac{\mathrm{3}}{\mathrm{2}}−\frac{\pi}{\:\sqrt{\mathrm{3}}}\right) \\ $$$$=\frac{−\mathrm{2}}{\mathrm{81}}\pi\left(\mathrm{3}\sqrt{\mathrm{3}}+\mathrm{2}\pi\right) \\ $$$${b}=\frac{\mathrm{8}}{\mathrm{9}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({tg}\left({t}\right)\right)\frac{{sin}^{\frac{\mathrm{2}}{\mathrm{3}}\:} \left({t}\right)}{{cos}^{\frac{\mathrm{2}}{\mathrm{3}}} \left({t}\right)}{cos}^{\mathrm{2}} \left({t}\right).{tg}^{−\frac{\mathrm{1}}{\mathrm{3}}} \left({t}\right) \\ $$$$=\frac{\mathrm{8}}{\mathrm{9}}\left(\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\left({t}\right)\right){cos}^{\frac{\mathrm{5}}{\mathrm{3}}} \left({t}\right){sin}^{\frac{\mathrm{1}}{\mathrm{3}}} \left({t}\right){dt}−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cos}\left({t}\right)\right){cos}^{\frac{\mathrm{5}}{\mathrm{3}}} \left({t}\right){sin}^{\frac{\mathrm{1}}{\mathrm{3}}} \left({t}\right){dt}\right) \\ $$$$=\frac{\mathrm{2}}{\mathrm{9}}\left(\Psi\left(\frac{\mathrm{2}}{\mathrm{3}}\right)−\Psi\left(\mathrm{2}\right)−\Psi\left(\frac{\mathrm{4}}{\mathrm{3}}\right)−\Psi\left(\mathrm{2}\right)\right)\beta\left(\frac{\mathrm{2}}{\mathrm{3}},\frac{\mathrm{4}}{\mathrm{3}}\right) \\ $$$$=\frac{\mathrm{2}}{\mathrm{9}}\left(\Psi\left(\frac{\mathrm{2}}{\mathrm{3}}\right)−\Psi\left(\frac{\mathrm{4}}{\mathrm{3}}\right)\right).\frac{\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\Gamma\left(\frac{\mathrm{4}}{\mathrm{3}}\right)}{\Gamma\left(\mathrm{2}\right)} \\ $$$$=\frac{\mathrm{2}}{\mathrm{9}}\left(\Psi\left(\frac{\mathrm{2}}{\mathrm{3}}\right)−\mathrm{3}−\Psi\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\right).\frac{\mathrm{1}}{\mathrm{3}}\frac{\pi}{{sin}\left(\frac{\pi}{\mathrm{3}}\right)} \\ $$$$=\frac{\mathrm{2}\pi}{\mathrm{27}}\left(\pi{cot}\left(\frac{\pi}{\mathrm{3}}\right)−\mathrm{3}\right).\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}=\frac{\mathrm{4}\pi}{\mathrm{27}\sqrt{\mathrm{3}}}\left(\frac{\pi}{\:\sqrt{\mathrm{3}}}−\mathrm{3}\right).=\frac{\mathrm{4}\pi}{\mathrm{81}}\left(\pi−\mathrm{3}\sqrt{\mathrm{3}}\right) \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({x}\right)}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\mathrm{4}\pi}{\mathrm{81}}\left(\pi−\mathrm{3}\sqrt{\mathrm{3}}\right)−\frac{\mathrm{2}\pi}{\mathrm{81}}\left(\mathrm{3}\sqrt{\mathrm{3}}+\mathrm{2}\pi\right) \\ $$$$=\frac{−\mathrm{18}\pi\sqrt{\mathrm{3}}}{\mathrm{81}}=\frac{−\mathrm{2}\pi\sqrt{\mathrm{3}}}{\mathrm{9}}\approx−\mathrm{1}.\mathrm{2092} \\ $$$$ \\ $$
Commented by mathmax by abdo last updated on 29/Dec/20
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}\:\mathrm{for}\:\mathrm{this}\:\mathrm{hardwork} \\ $$
Commented by mindispower last updated on 29/Dec/20
$${withe}\:{pleasur} \\ $$