calculate-0-lnx-x-2-x-1-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 127236 by Bird last updated on 28/Dec/20 calculate∫0∞lnx(x2−x+1)2dx Answered by mindispower last updated on 28/Dec/20 =∫0∞ln(x)(1+x)2(x3+1)2dx=∫0∞x2ln(x)(1+x3)2+2∫0∞ln(x).xdx(1+x3)2+∫ln(x)dx(1+x3)2=a+b+ca=0:x→1x⇒a=−ac=x=tg23(t)⇒dx=23(1+tg2(t))tg−13(t)dt⇔∫0π223.ln(tg(t))(1+tg2(t))2.23(1+tg2(t)).tg−13(t)dt=49∫0π2ln(tg(t))1+tg2(t).tg−13dt=49∫0π2ln(sin(x))−ln(cos(x))cos−13(t)sin−13(t).cos2(t)dt=49.∫0π2ln(sin(t))cos73(t)sin−13(t)−49∫0π2ln(cos(t))cos73(t)sin−13(t)dt=19(A−B)β(x,y)=2∫0π2cos(t)2x−1sin2y−1(t)dt∂xβ(x,y)=2.∫0π22ln(cos(t))cos(t)2x−1sin2y−1(t)dtA=19∂yβ(x,y)(x,y)=(53,13)B=19∂xβ(x,y)(x,y)=(53,13)∂xβ(x,y)=β(x,y)[Ψ(x)−Ψ(x+y))β(53,13)9(Ψ(13)−Ψ(2)−Ψ(53)+Ψ(2))=Γ(13)Γ(53)9Γ(2)(Ψ(13)−Ψ(53))=Γ(13).23Γ(23)9Γ(2)(Ψ(13)−32−Ψ(23))=427.π3(−32+πcot(2π3))=4π273(−32−π3)=−281π(33+2π)b=89∫0π2ln(tg(t))sin23(t)cos23(t)cos2(t).tg−13(t)=89(∫0π2ln(sin(t))cos53(t)sin13(t)dt−∫0π2ln(cos(t))cos53(t)sin13(t)dt)=29(Ψ(23)−Ψ(2)−Ψ(43)−Ψ(2))β(23,43)=29(Ψ(23)−Ψ(43)).Γ(23)Γ(43)Γ(2)=29(Ψ(23)−3−Ψ(13)).13πsin(π3)=2π27(πcot(π3)−3).23=4π273(π3−3).=4π81(π−33)∫0∞ln(x)(x2−x+1)2=4π81(π−33)−2π81(33+2π)=−18π381=−2π39≈−1.2092 Commented by mathmax by abdo last updated on 29/Dec/20 thankyousirforthishardwork Commented by mindispower last updated on 29/Dec/20 withepleasur Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Nice-1-ln-2-x-x-ln-x-dx-x-1-x-3-dx-4-x-x-dx-Next Next post: 6-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.