calculate-0-lnx-x-2-x-2-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 115725 by Bird last updated on 28/Sep/20 calculate∫0∞lnx(x2+x+2)2dx Answered by mathmax by abdo last updated on 28/Sep/20 letf(a)=∫0∞lnxx2+x+adxwitha>14wehavef′(a)=−∫0∞lnx(x2+x+a)2and∫0∞lnx(x2+x+a)2=−f′(2)letexplicitef(a)byusing∫0∞q(x)ln(x)dx=−12Re(∑iRes(q(z)ln2z,ai)φ(z)=q(z)ln2z=ln2zz2+z+apolesofφ?Δ=1−4a<0⇒z1=−1+i4a−12andz2=−1−i4a−12∣z1∣=121+4a−1=a⇒z1=ae−iarctan4a−1andz2=aeiarctan4a−1wehaveφ(z)=ln2z(z−z1)(z−z2)Res(φ,z1)=limz→z1(z−z1)φ(z)=ln2z1z1−z2=(lna+iarctan4a−1)2i4a−1=ln2a+2ilnaarctan4a−1−arctan24a−1i4a−1=−iln2a+2iln(a)arctan4a−1−arctan24a−14a−1=−iln2a+lnaarctan4a−1+iarctan24a−14a−1Res(φ,z2)=limz→z2(z−z2)φ(z)=ln2z2z2−z1=(lna+iarctan4a−1)2−i4a−1=ln2a+2ilnaarctan4a−1−arctan24a−1−i4a−1=iln2a−lnaarctan4a−1−iarctan24a−14a−1⇒ΣRes=14a−1{−iln2a+lnaarctan4a−1+iarctan24a−1+iln2a−lnaarctan4a−1−iarctan4a−1}Re(ΣRes(…))=14a−1{o}=0⇒∫0∞lnxx2+x+adx=0⇒∫0∞lnx(x2+x+a)2dx=0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-f-n-1-1-R-1-1-R-2-lense-s-maker-equation-when-is-positive-or-negative-R-1-and-R-2-Next Next post: Calcul-n-3-2n-1-n-n-2-n-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.