Menu Close

calculate-0-lnx-x-2-x-2-2-dx-




Question Number 115725 by Bird last updated on 28/Sep/20
calculate ∫_0 ^∞  ((lnx)/((x^(2 ) +x+2)^2 ))dx
calculate0lnx(x2+x+2)2dx
Answered by mathmax by abdo last updated on 28/Sep/20
let f(a) =∫_0 ^∞   ((lnx)/(x^2  +x +a))dx with a>(1/4)  we have f^′ (a) =−∫_0 ^∞  ((lnx)/((x^2  +x+a)^2 )) and ∫_0 ^∞  ((lnx)/((x^2  +x+a)^2 ))=−f^′ (2)  let explicite f(a) by using ∫_0 ^∞  q(x)ln(x)dx=−(1/2)Re(Σ_i  Res(q(z)ln^2 z ,a_i )  ϕ(z) =q(z)ln^2 z =((ln^2 z)/(z^2  +z+a)) poles of ϕ?  Δ =1−4a<0 ⇒z_1 =((−1+i(√(4a−1)))/2) and z_2 =((−1−i(√(4a−1)))/2)  ∣z_1 ∣ =(1/2)(√(1+4a−1))=(√a) ⇒z_1 =(√a)e^(−iarctan(√(4a−1)))   and z_2 =(√a)e^(iarctan(√(4a−1)))     we have ϕ(z) =((ln^2 z)/((z−z_1 )(z−z_2 )))  Res(ϕ,z_1 ) =lim_(z→z_1 )    (z−z_1 )ϕ(z) =((ln^2 z_1 )/(z_1 −z_2 ))  =(((ln(√a)+iarctan(√(4a−1)))^2 )/(i(√(4a−1)))) =((ln^2 (√a)+2iln(√a)arctan(√(4a−1))−arctan^2 (√(4a−1)))/(i(√(4a−1))))  =−i((ln^2 (√a)+2iln((√a)) arctan(√(4a−1))−arctan^2 (√(4a−1)))/( (√(4a−1))))  =((−iln^2 (√a) +lna arctan(√(4a−1))+iarctan^2 (√(4a−1)))/( (√(4a−1))))  Res(ϕ,z_2 ) =lim_(z→z_2 )   (z−z_2 )ϕ(z) =((ln^2 z_2 )/(z_2 −z_1 )) =(((ln(√a)+iarctan(√(4a−1)))^2 )/(−i(√(4a−1))))  =((ln^2 (√a)+2iln(√a)arctan(√(4a−1))−arctan^2 (√(4a−1)))/(−i(√(4a−1))))  =((iln^2 (√a)−lna arctan(√(4a−1))−iarctan^2 (√(4a−1)))/( (√(4a−1)))) ⇒  Σ Res=(1/( (√(4a−1)))){−iln^2 (√a)+lna arctan(√(4a−1))+i arctan^2 (√(4a−1))  +iln^2 (√a)−lna arctan(√(4a−1))−iarctan(√(4a−1))}  Re(Σ Res(...))=(1/( (√(4a−1)))){o} =0 ⇒∫_0 ^∞   ((lnx)/(x^2  +x+a))dx =0 ⇒  ∫_0 ^∞   ((lnx)/((x^2  +x+a)^2 ))dx =0
letf(a)=0lnxx2+x+adxwitha>14wehavef(a)=0lnx(x2+x+a)2and0lnx(x2+x+a)2=f(2)letexplicitef(a)byusing0q(x)ln(x)dx=12Re(iRes(q(z)ln2z,ai)φ(z)=q(z)ln2z=ln2zz2+z+apolesofφ?Δ=14a<0z1=1+i4a12andz2=1i4a12z1=121+4a1=az1=aeiarctan4a1andz2=aeiarctan4a1wehaveφ(z)=ln2z(zz1)(zz2)Res(φ,z1)=limzz1(zz1)φ(z)=ln2z1z1z2=(lna+iarctan4a1)2i4a1=ln2a+2ilnaarctan4a1arctan24a1i4a1=iln2a+2iln(a)arctan4a1arctan24a14a1=iln2a+lnaarctan4a1+iarctan24a14a1Res(φ,z2)=limzz2(zz2)φ(z)=ln2z2z2z1=(lna+iarctan4a1)2i4a1=ln2a+2ilnaarctan4a1arctan24a1i4a1=iln2alnaarctan4a1iarctan24a14a1ΣRes=14a1{iln2a+lnaarctan4a1+iarctan24a1+iln2alnaarctan4a1iarctan4a1}Re(ΣRes())=14a1{o}=00lnxx2+x+adx=00lnx(x2+x+a)2dx=0

Leave a Reply

Your email address will not be published. Required fields are marked *