Menu Close

calculate-0-lnx-x-4-1-dx-




Question Number 116097 by mathmax by abdo last updated on 30/Sep/20
calculate ∫_0 ^∞  ((lnx)/(x^4  +1))dx
calculate0lnxx4+1dx
Answered by mnjuly1970 last updated on 01/Oct/20
  solution:   Ω=∫_0 ^( ∞) ((ln(x))/(1+x^4 )) =???  x^4 =t ⇒ x=t^(1/4) ⇒dx=(1/4)t^((−3)/4)    Ω =(1/(16))∫_0 ^( ∞) ((ln(t)t^(−(3/4)) )/(1+t))dt   f(λ)=∫_(0  ) ^( ∞) (t^(−λ) /(1+t))dt ⇒  Ω =((−1)/(16)) f ′((3/4))  but::  f(λ) = Γ(λ)Γ(1−λ)  ;   0<λ<1               f(λ)=(π/(sin(λπ))) ⇒ f ′(λ)=[− ((π^2 cos(πλ))/(sin^2 (πλ)))]_(λ=(3/4))                 f ′((3/4))=π^2  ∗(((√2)/2)/(1/2)) =π^2  (√2)        Ω:=− (1/(16))f ′((3/4))=−((π^2  (√2))/(16))  ✓       ...m.n.july.1970...
solution:Ω=0ln(x)1+x4=???x4=tx=t14dx=14t34Ω=1160ln(t)t341+tdtf(λ)=0tλ1+tdtΩ=116f(34)but::f(λ)=Γ(λ)Γ(1λ);0<λ<1f(λ)=πsin(λπ)f(λ)=[π2cos(πλ)sin2(πλ)]λ=34f(34)=π22212=π22Ω:=116f(34)=π2216m.n.july.1970
Commented by 1549442205PVT last updated on 01/Oct/20
third line →^(?) fourth line( lnt missed?)
thirdline?fourthline(lntmissed?)
Commented by mnjuly1970 last updated on 01/Oct/20
 method: feynman′s trick  please look at again.
method:feynmanstrickpleaselookatagain.
Commented by 1549442205PVT last updated on 01/Oct/20
Thank Sir,i understanded.(a^x )′=a^x lna  and put t=(1/x)−1⇒f(λ)=∫_0 ^1 x^(−λ) (1−x)^(1−λ) =β(λ,1−λ)=Γ(λ)Γ(1−λ)=(π/(sin(λπ)))  Great Sir thanh you very much
ThankSir,iunderstanded.(ax)=axlnaandputt=1x1f(λ)=01xλ(1x)1λ=β(λ,1λ)=Γ(λ)Γ(1λ)=πsin(λπ)GreatSirthanhyouverymuch
Commented by mnjuly1970 last updated on 01/Oct/20
you are welcome.
youarewelcome.
Commented by Tawa11 last updated on 06/Sep/21
grest sir
grestsir
Answered by mathdave last updated on 01/Oct/20
solution  let I=∫_0 ^1 ((lnx)/(x^4 +1))dx+∫_1 ^∞ ((lnx)/(1+x^4 ))dx=A+B  putting  x=(1/x)   into B  I=∫_0 ^1 ((lnx)/(1+x^4 ))dx+∫_1 ^0 ((ln((1/x)))/(1+(1/x^4 )))×−(1/x^2 )dx=∫_0 ^1 ((lnx)/(1+x^4 ))dx−∫_0 ^1 ((x^2 lnx)/(1+x^4 ))dx  I=(−)^n Σ_(n=0) ^∞ ∫_0 ^1 x^(4n) lnxdx−(−1)^n Σ_(n=0) ^∞ ∫_0 ^1 x^2 .x^(4n) lnxdx  I=(−1)^n Σ_(n=0) ^∞ (∂/∂a)∣_(a=1) ∫_0 ^1 x^(4n) .x^(a−1) dx−(−1)^n Σ_(n=0) ^∞ (∂/∂a)∣_(a=1) ∫_0 ^1 x^(4n+2) .x^(a−1) dx  I=Σ_(n=0) ^∞ (∂/∂a)∣_(a=1) (((−1)^n )/((4n+a)))−Σ_(n=0) ^∞ (∂/∂a)∣_(a=1) (((−1)^n )/((4n+2+a)))  I=−Σ_(n=0) ^∞ (((−1)^n )/((4n+1)^2 ))+Σ_(n=0) ^∞ (((−1)^n )/((4n+3)^2 ))=−Σ_(n=−∞) ^∞ (((−1)^n )/((4n+1)^2 ))  note Σ_(n=−∞) ^∞ (((−1)^n )/((ax+1)^n ))=−(π/a^n )lim_(z→−(1/a)) (1/((n−1)!))•(d^(n−1) /dz^(n−1) )(cosec(πz))  I=−Σ_(n=−∞) ^∞ (1/((4n+1)^2 ))=−(−(π/4^2 ))lim_(z→−(1/4)) (1/((2−1)!))•(d/dz)(cosec(πz))  I=(π/(16))lim_(z→−(1/4)) (1/(1!))(−πcosec(πz)cot(πz))  I=−(π^2 /(16))cosec(−(π/4))cot(−(π/4))=−(π^2 /(16))(−(√2))(−1)=−(π^2 /(16))(√2)  ∵∫_0 ^∞ ((lnx)/(1+x^4 ))dx=−(π^2 /(8(√2)))  by mathdave(01/10/2020)
solutionletI=01lnxx4+1dx+1lnx1+x4dx=A+Bputtingx=1xintoBI=01lnx1+x4dx+10ln(1x)1+1x4×1x2dx=01lnx1+x4dx01x2lnx1+x4dxI=()nn=001x4nlnxdx(1)nn=001x2.x4nlnxdxI=(1)nn=0aa=101x4n.xa1dx(1)nn=0aa=101x4n+2.xa1dxI=n=0aa=1(1)n(4n+a)n=0aa=1(1)n(4n+2+a)I=n=0(1)n(4n+1)2+n=0(1)n(4n+3)2=n=(1)n(4n+1)2noten=(1)n(ax+1)n=πanlimz1a1(n1)!dn1dzn1(cosec(πz))I=n=1(4n+1)2=(π42)limz141(21)!ddz(cosec(πz))I=π16limz1411!(πcosec(πz)cot(πz))I=π216cosec(π4)cot(π4)=π216(2)(1)=π21620lnx1+x4dx=π282bymathdave(01/10/2020)
Commented by Tawa11 last updated on 06/Sep/21
great sir
greatsir
Answered by Bird last updated on 01/Oct/20
let f(a) =∫_0 ^∞  (t^(a−1) /(1+t)) dt  with 0<a<1  we have f(a) =(π/(sin(πa)))  and f(a) =∫_0 ^∞  (e^((a−1)lnt) /(1+t))dt ⇒  f^′ (a) =∫_0 ^∞ ((lnt t^(a−1) )/(1+t))dt=∫_0 ^∞  ((t^(a−1) lnt)/(1+t))dt  ∫_0 ^∞ ((lnx)/(x^4 +1))dx =_(x=t^(1/4) ) (1/4) ∫_0 ^∞  ((lnt)/(1+t)).(1/4)t^((1/4)−1) dt  =(1/(16)) ∫_0 ^∞  ((t^((1/4)−1)  lnt)/(1+t))dt  =(1/(16))f^′ ((1/4)) but f^′ (a)=−((π^2 cos(πa))/(sin^2 (πa)))  ⇒f^′ ((1/4))=−π^2 ×((1/( (√2)))/(1/2)) =((−2π^2 )/( (√2)))  =−(√2)π^(2 )  ⇒  ∫_0 ^∞   ((lnx)/(1+x^4 ))dx =−((π^2 (√2))/(16))
letf(a)=0ta11+tdtwith0<a<1wehavef(a)=πsin(πa)andf(a)=0e(a1)lnt1+tdtf(a)=0lntta11+tdt=0ta1lnt1+tdt0lnxx4+1dx=x=t14140lnt1+t.14t141dt=1160t141lnt1+tdt=116f(14)butf(a)=π2cos(πa)sin2(πa)f(14)=π2×1212=2π22=2π20lnx1+x4dx=π2216
Commented by mnjuly1970 last updated on 01/Oct/20
excellent sir..
excellentsir..
Commented by Bird last updated on 01/Oct/20
you are welcome
youarewelcome

Leave a Reply

Your email address will not be published. Required fields are marked *