Menu Close

calculate-0-logx-x-2-x-1-dx-




Question Number 148570 by mathmax by abdo last updated on 29/Jul/21
calculate ∫_0 ^∞  ((logx)/(x^2  +x+1))dx
calculate0logxx2+x+1dx
Answered by Ar Brandon last updated on 29/Jul/21
Φ=∫_0 ^∞ ((logx)/(x^2 +x+1))dx      =∫_0 ^1 ((logx)/(x^2 +x+1))dx+∫_1 ^∞ ((logx)/(x^2 +x+1))dx      =∫_0 ^1 ((logx)/(x^2 +x+1))dx−∫_0 ^1 ((logx)/(x^2 +x+1))dx=0
Φ=0logxx2+x+1dx=01logxx2+x+1dx+1logxx2+x+1dx=01logxx2+x+1dx01logxx2+x+1dx=0
Answered by mathmax by abdo last updated on 29/Jul/21
∫_0 ^∞   ((logx)/(x^2  +x+1))dx =−(1/2)Re(Σ Res(f(z)log^2 z ,a_i )  f(z)=(1/(z^2  +z+1))  poles of f!  Δ=1−4=−3 ⇒z_1 =((−1+i(√3))/2) =e^((2iπ)/3)   and z_2 =((−1−i(√3))/2)  ϕ(z)=f(z)log^2 z ⇒ϕ(z)=((log^2 z)/((z−z_1 )(z−z_2 )))  Res(ϕ,e^((2iπ)/3) ) =(((((2iπ)/3))^2 )/(i(√3))) =−((4π^2 )/(9(i(√3)))) =((4iπ^2 )/(9(√3)))  Res(ϕ,e^(−((2iπ)/3)) )=(((−((2iπ)/3))^2 )/(−i(√3)))=((4π^2 )/(9(i(√3))))=((−4iπ^2 )/(9(√3))) ⇒  Σ Res(ϕ..)=0 ⇒∫_0 ^∞  ((logx)/(x^2  +x+1))dx=0
0logxx2+x+1dx=12Re(ΣRes(f(z)log2z,ai)f(z)=1z2+z+1polesoff!Δ=14=3z1=1+i32=e2iπ3andz2=1i32φ(z)=f(z)log2zφ(z)=log2z(zz1)(zz2)Res(φ,e2iπ3)=(2iπ3)2i3=4π29(i3)=4iπ293Res(φ,e2iπ3)=(2iπ3)2i3=4π29(i3)=4iπ293ΣRes(φ..)=00logxx2+x+1dx=0

Leave a Reply

Your email address will not be published. Required fields are marked *