Question Number 31077 by abdo imad last updated on 02/Mar/18
$${calculate}\:\int\int_{\mathrm{0}<{x}<\mathrm{1}{and}\:\mathrm{0}<{y}<{x}^{\mathrm{2}} } \:\frac{{y}}{\:\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }}{dxdy}. \\ $$
Commented by abdo imad last updated on 07/Mar/18
$${I}=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\left(\:\:\int_{\mathrm{0}} ^{{x}^{\mathrm{2}} } \:\:\frac{{y}}{\:\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }}{dy}\right){dx}\:\:{but} \\ $$$$\int_{\mathrm{0}} ^{{x}^{\mathrm{2}} } \:\:\frac{{y}}{\:\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }}{dy}=\:\left[\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }\:^{} \right]_{{y}=\mathrm{0}} ^{{y}={x}^{\mathrm{2}} } \:=\sqrt{{x}^{\mathrm{2}} \:+{x}^{\mathrm{4}} }\:−{x}\:\Rightarrow \\ $$$${I}=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\sqrt{{x}^{\mathrm{2}} \:+{x}^{\mathrm{4}} }\:−{x}\right){dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{x}^{\mathrm{2}} \:+{x}^{\mathrm{4}} \:}\:{dx}\:−\frac{\mathrm{1}}{\mathrm{2}}\:\:{but} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\sqrt{{x}^{\mathrm{2}} \:+{x}^{\mathrm{4}} }\:{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} {x}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{2}{x}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} {dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\left[\:\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:=\frac{\mathrm{1}}{\mathrm{3}}\left(\:\mathrm{2}^{\frac{\mathrm{3}}{\mathrm{2}}} \:−\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{2}\sqrt{\mathrm{2}}\:−\mathrm{1}\right)\:\Rightarrow \\ $$$${I}=\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}}\:−\frac{\mathrm{1}}{\mathrm{3}}\:−\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}}\:−\frac{\mathrm{5}}{\mathrm{6}}\:. \\ $$