Menu Close

calculate-0-pi-2-cos-2-x-3sin-2-x-dx-




Question Number 40823 by math khazana by abdo last updated on 28/Jul/18
calculate ∫_0 ^(π/2) (√(cos^2 x +3sin^2 x))dx
calculate0π2cos2x+3sin2xdx
Commented by maxmathsup by imad last updated on 31/Jul/18
let I = ∫_0 ^(π/2) (√(cos^2 x +3sin^2 x))dx  I = ∫_0 ^(π/2) cosx(√(1+3tan^2 x))dx= ∫_0 ^(π/2)   ((√(1+3tan^2 x))/( (√(1+tan^2 x))))dx  ch     (√3)tanx =sh(u)  =∫_0 ^∞      ((√(1+sh^2 u))/( (√(1+((sh^2 u)/3)))))(((1/( (√3)))chu)/((1+((sh^2 u)/3)))) du                        (x=arctan(((shu)/( (√3)))))  =(1/( (√3))) ∫_0 ^∞     ((ch^2 u du)/( (√(3+sh^2 u))(3+sh^2 u))) 3(√3)du= 3 ∫_0 ^∞    ((ch^2 u)/((3+sh^2 u)^(3/2) )) du  = 3 ∫_0 ^∞    (((1+ch(2u))/2)/((3+((ch(2u)−1)/2))^(3/2) )) du = (3/2) 2^(3/2)  ∫_0 ^∞    ((1+ch(2u))/((5+ch(2u))^(3/2) )) du  =3(√2)  ∫_0 ^∞      ((1+((e^(2u)  +e^(−2u) )/2))/((5 +((e^(2u)  +e^(−2u) )/2))^(3/2) )) du  =3(√2).(2^(3/2) /2) ∫_0 ^∞       ((2 +e^(2u)  +e^(−2u) )/((10 +e^(2u)  +e^(−2u) )^(3/2) )) du  =_(e^u =t)   6  ∫_1 ^(+∞)     ((2 +t^2  +t^(−2) )/((10 +t^2  +t^(−2) )^(3/2) )) (dt/t)  =6 ∫_1 ^(+∞)      ((2t^2  +t^4  +1)/(t^3 (((10t^2  +t^4  +1)/t^2 ))^(3/2) ))dt = 6 ∫_0 ^∞      ((2t^2  +t^4  +1)/( (t^4  +10t^2  +1)^(3/2) )) dt  ...be continued...
letI=0π2cos2x+3sin2xdxI=0π2cosx1+3tan2xdx=0π21+3tan2x1+tan2xdxch3tanx=sh(u)=01+sh2u1+sh2u313chu(1+sh2u3)du(x=arctan(shu3))=130ch2udu3+sh2u(3+sh2u)33du=30ch2u(3+sh2u)32du=301+ch(2u)2(3+ch(2u)12)32du=3223201+ch(2u)(5+ch(2u))32du=3201+e2u+e2u2(5+e2u+e2u2)32du=32.232202+e2u+e2u(10+e2u+e2u)32du=eu=t61+2+t2+t2(10+t2+t2)32dtt=61+2t2+t4+1t3(10t2+t4+1t2)32dt=602t2+t4+1(t4+10t2+1)32dtbecontinued

Leave a Reply

Your email address will not be published. Required fields are marked *