Menu Close

calculate-0-pi-2-cos-sin-cos-sin-d-




Question Number 37237 by abdo.msup.com last updated on 11/Jun/18
calculate  ∫_0 ^(π/2)     ((cosθ.sinθ)/(cosθ +sinθ)) dθ .
calculate0π2cosθ.sinθcosθ+sinθdθ.
Commented by abdo.msup.com last updated on 27/Jul/18
changement tan((θ/2))=t give  I = ∫_0 ^1    (((2t(1−t^2 ))/((1+t^2 )^2 ))/(((1−t^2 )/(1+t^2 )) +((2t)/(1+t^2 )))) ((2dt)/(1+t^2 ))  = ∫_0 ^1      ((2t(1−t^2 ))/((1+t^2 )^2 (1−t^2 +2t)))dt  = ∫_0 ^1     ((2t(t^2 −1))/((1+t^2 )^2 (t−1)^2 ))dt  =∫_0 ^1    ((2t(t+1))/((t^2  +1)^2 (t−1)))dt  =∫_0 ^1     ((2t^2  +2t)/((t−1)(t^2  +1)^2 ))dt let decompose  F(t)=((2t^2 +2t)/((t−1)(t^2 +1)^2 ))  F(t)=(a/(t−1)) +((bt+c)/(t^2  +1)) +((dt +e)/((t^2  +1)^2 ))  ....be continued...
changementtan(θ2)=tgiveI=012t(1t2)(1+t2)21t21+t2+2t1+t22dt1+t2=012t(1t2)(1+t2)2(1t2+2t)dt=012t(t21)(1+t2)2(t1)2dt=012t(t+1)(t2+1)2(t1)dt=012t2+2t(t1)(t2+1)2dtletdecomposeF(t)=2t2+2t(t1)(t2+1)2F(t)=at1+bt+ct2+1+dt+e(t2+1)2.becontinued
Answered by math1967 last updated on 11/Jun/18
(1/2)∫((2sinθcosθ)/(cosθ+sinθ))dθ  (1/2)∫(((sinθ+cosθ)^2 )/(cosθ+sinθ))dθ −(1/2)∫(dθ/(cosθ+sinθ))  −(1/2)cosθ+(1/2)sinθ−(1/(2(√2)))∫(dθ/(sin(π/4)cosθ+cos(π/4)sinθ))  (1/2)(sinθ−cosθ)−(1/(2(√2)))∫cosec((π/4)+θ)dθ  (1/2)(sinθ−cosθ)−(1/(2(√2)))ln[cosec((π/4)+θ)−cot((π/4)+θ)]  ∴∫_0 ^(π/2) ((sinθcosθdθ)/(sinθ+cosθ))={(1/2)×1−(1/(2(√2)))ln[(√2) +1]}  −{−(1/2)−(1/(2(√2)))ln[[(√2) −1]}=1+(1/(2(√2)))ln(((√2) −1)/( (√2) +1))
122sinθcosθcosθ+sinθdθ12(sinθ+cosθ)2cosθ+sinθdθ12dθcosθ+sinθ12cosθ+12sinθ122dθsinπ4cosθ+cosπ4sinθ12(sinθcosθ)122cosec(π4+θ)dθ12(sinθcosθ)122ln[cosec(π4+θ)cot(π4+θ)]π20sinθcosθdθsinθ+cosθ={12×1122ln[2+1]}{12122ln[[21]}=1+122ln212+1
Commented by math1967 last updated on 11/Jun/18
Pls.check
Pls.check

Leave a Reply

Your email address will not be published. Required fields are marked *