Menu Close

calculate-0-pi-2-cosx-sinx-cos-8-x-sin-8-x-dx-




Question Number 57235 by maxmathsup by imad last updated on 31/Mar/19
calculate ∫_0 ^(π/2)  ((cosx −sinx)/( (√(cos^8 x +sin^8 x)))) dx
calculate0π2cosxsinxcos8x+sin8xdx
Commented by maxmathsup by imad last updated on 01/Apr/19
changement x=(π/2)−t give I =−∫_0 ^(π/2)  ((cos((π/2)−t)−sin((π/2)−t))/( (√(cos^8 ((π/2)−t)+sin^8 ((π/2)(t)))))(−dt)  =∫_0 ^(π/2)    ((sint −cost)/( (√(sin^8 t +cos^8 t)))) dt =−I ⇒2I =0 ⇒I =0 .
changementx=π2tgiveI=0π2cos(π2t)sin(π2t)cos8(π2t)+sin8(π2(t)(dt)=0π2sintcostsin8t+cos8tdt=I2I=0I=0.
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Apr/19
I=∫_0 ^(π/2) ((cosx−sinx)/( (√(cos^8 x+sin^8 x))))dx  =∫_0 ^(π/2) ((sinx−cosx)/( (√(sin^8 x+cos^8 x))))dx [∫_0 ^a f(x)dx=∫_0 ^a f(a−x)dx]  2I=0→I=0
I=0π2cosxsinxcos8x+sin8xdx=0π2sinxcosxsin8x+cos8xdx[0af(x)dx=0af(ax)dx]2I=0I=0

Leave a Reply

Your email address will not be published. Required fields are marked *