Menu Close

calculate-0-pi-2-dt-1-a-cos-2-t-




Question Number 32712 by caravan msup abdo. last updated on 31/Mar/18
calculate ∫_0 ^(π/2)     (dt/(1+a cos^2 t)) .
calculate0π2dt1+acos2t.
Commented by abdo imad last updated on 03/Apr/18
let put F(a) = ∫_0 ^(π/2)   (dt/(1+a cos^2 t))  F(a) = ∫_0 ^(π/2)     (dt/(1+a ((1+cos(2t))/2))) =∫_0 ^(π/2)       ((2dt)/(2+a +acos(2t)))  =_(2t =u)    ∫_0 ^π     (2/(2+a +acos(u))) (du/2)  = ∫_0 ^π     (du/(2+a +acosu))  but the ch. tan((u/2))=x give  F(a) = ∫_0 ^(+∞)     (1/(2+a +a ((1−x^2 )/(1+x^2 ))))  ((2dx)/(1+x^2 ))  = ∫_0 ^∞       ((2dx)/((2+a)(1+x^2 ) +a(1−x^2 )))  = ∫_0 ^∞      ((2dx)/(2+a  +(2+a)x^2  +a −ax^2 ))  = ∫_0 ^∞     ((2dx)/( 2+2a +2x^2 )) = ∫_0 ^∞    (dx/(1+a +x^2 ))  case 1  1+a >0  ⇒ F(a) =_(x=(√(1+a))u)  ∫_0 ^∞    (((√(1+a))du)/((1+a)(1+u^2 )))  = (π/(2(√(1+a))))  case2  1+a<0 ⇒ F(a) = ∫_0 ^∞     (dx/(x^2  −((√(−(1+a))))^2 ))  = ∫_0 ^∞     (dx/((x −α)(x+α)))       (α=(√(−1−a)))  = (1/(2α))∫_0 ^∞  ( (1/(x−α)) −(1/(x+α)))dx =(1/(2α)) [ln∣((x−α)/(x+α))∣]_0 ^(+∞)  =0
letputF(a)=0π2dt1+acos2tF(a)=0π2dt1+a1+cos(2t)2=0π22dt2+a+acos(2t)=2t=u0π22+a+acos(u)du2=0πdu2+a+acosubutthech.tan(u2)=xgiveF(a)=0+12+a+a1x21+x22dx1+x2=02dx(2+a)(1+x2)+a(1x2)=02dx2+a+(2+a)x2+aax2=02dx2+2a+2x2=0dx1+a+x2case11+a>0F(a)=x=1+au01+adu(1+a)(1+u2)=π21+acase21+a<0F(a)=0dxx2((1+a))2=0dx(xα)(x+α)(α=1a)=12α0(1xα1x+α)dx=12α[lnxαx+α]0+=0

Leave a Reply

Your email address will not be published. Required fields are marked *