Menu Close

calculate-0-pi-2-dt-1-cos-cost-




Question Number 50415 by Abdo msup. last updated on 16/Dec/18
calculate ∫_0 ^(π/2)   (dt/(1+cosθ cost))
calculate0π2dt1+cosθcost
Commented by Abdo msup. last updated on 18/Dec/18
let put cosθ = λ and find A(λ)=∫_0 ^(π/2)    (dt/(1+λ cost))  with ∣λ∣≤1  changement tan((t/2))= u give  A(λ)= ∫_0 ^1     (1/(1+λ((1−u^2 )/(1+u^2 )))) ((2du)/(1+u^2 ))  =∫_0 ^1     ((2du)/(1+u^2  +λ−λu^2 )) =∫_0 ^1    ((2du)/((1−λ)u^2  +1+λ))  =(2/(1−λ)) ∫_0 ^1    (du/(u^2  +((1+λ)/(1−λ))))   =_(u=(√((1+λ)/(1−λ)))t)    (2/(1−λ)) ∫_0 ^(√((1−λ)/(1+λ)))      (((√((1+λ)/(1−λ)))dt)/(((1+λ)/(1−λ))(1+t^2 )))  =(2/(1+λ)) ((√(1+λ))/( (√(1−λ))))  arctan((√((1−λ)/(1+λ))))  = (2/( (√(1−λ^2 )))) arctan((√((1−λ)/(1+λ)))) ⇒  ∫_0 ^(π/2)     (dt/(1+coθ cost)) =A(cosθ)  =(2/( (√(1−cos^2 θ)))) arctan((√((1−cosθ)/(1+cosθ))) )  =(2/(∣sinθ∣)) arctan∣tan((θ/2))∣ .
letputcosθ=λandfindA(λ)=0π2dt1+λcostwithλ∣⩽1changementtan(t2)=ugiveA(λ)=0111+λ1u21+u22du1+u2=012du1+u2+λλu2=012du(1λ)u2+1+λ=21λ01duu2+1+λ1λ=u=1+λ1λt21λ01λ1+λ1+λ1λdt1+λ1λ(1+t2)=21+λ1+λ1λarctan(1λ1+λ)=21λ2arctan(1λ1+λ)0π2dt1+coθcost=A(cosθ)=21cos2θarctan(1cosθ1+cosθ)=2sinθarctantan(θ2).
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Dec/18
∫(dt/(1+cosθcost))  (1/(cosθ))∫(dt/(secθ+cost))  (1/(cosθ))∫(dt/(secθ+((1−tan^2 (t/2))/(1+tan^2 (t/2)))))  (1/(cosθ))∫((sec^2 (t/2)dt)/(secθ+secθtan^2 (t/2)+1−tan^2 (t/2)))  =secθ∫((sec^2 (t/2)×dt)/((secθ+1)+tan^2 (t/2)(secθ−1)))  =secθ∫((sec^2 (t/2))/((secθ−1){((secθ+1)/(secθ−1))+tan^2 (t/2)}))dt  =((secθ)/(secθ−1))∫((sec^2 (t/2))/(((1+cosθ)/(1−cosθ))+tan^2 (t/2)))dt  =(1/(1−cosθ))∫((sec^2 (t/2)dt)/(cot^2 (θ/2)+tan^2 (t/2)))  k=tan(t/2)  dk=(1/2)sec^2 (t/2)dt  =(1/(2sin^2 (θ/2)))∫((2dk)/(cot^2 (θ/2)+k^2 ))  =(1/(sin^2 (θ/2)))∫(dk/(cot^2 (θ/2)+k^2 ))  =(1/(sin^2 (θ/2)))×(1/(cot(θ/2)))tan^(−1) ((k/(cot(θ/2))))  =(2/(sinθ))tan^(−1) (((tan(t/2))/(cot(θ/2))))+c  required answer iz  (2/(sinθ))∣tan^(−1) (((tan(t/2))/(cot(θ/2))))∣_0 ^(π/2)   =(2/(sinθ))[tan^(−1) (((tan(π/4))/(cot(θ/2))))−tan^(−1) (((tan0)/(cot(θ/2))))]  =(2/(sinθ))[tan^(−1) (tan(θ/2))]  =(2/(sinθ))×(θ/2)=(θ/(sinθ))
dt1+cosθcost1cosθdtsecθ+cost1cosθdtsecθ+1tan2t21+tan2t21cosθsec2t2dtsecθ+secθtan2t2+1tan2t2=secθsec2t2×dt(secθ+1)+tan2t2(secθ1)=secθsec2t2(secθ1){secθ+1secθ1+tan2t2}dt=secθsecθ1sec2t21+cosθ1cosθ+tan2t2dt=11cosθsec2t2dtcot2θ2+tan2t2k=tant2dk=12sec2t2dt=12sin2θ22dkcot2θ2+k2=1sin2θ2dkcot2θ2+k2=1sin2θ2×1cotθ2tan1(kcotθ2)=2sinθtan1(tant2cotθ2)+crequiredansweriz2sinθtan1(tant2cotθ2)0π2=2sinθ[tan1(tanπ4cotθ2)tan1(tan0cotθ2)]=2sinθ[tan1(tanθ2)]=2sinθ×θ2=θsinθ

Leave a Reply

Your email address will not be published. Required fields are marked *