Menu Close

calculate-0-pi-2-dt-1-cos-sint-




Question Number 32351 by abdo imad last updated on 23/Mar/18
calculate ∫_0 ^(π/2)       (dt/(1+cosθ sint)) .
calculate0π2dt1+cosθsint.
Answered by sma3l2996 last updated on 25/Mar/18
let x=tan(t/2)⇒dt=((2dx)/(1+x^2 ))  sint=((2x)/(1+x^2 ))  ∫_0 ^(π/2) (dt/(1+cosθsint))=2∫_0 ^1 (dx/(1+x^2 +2xcosθ))=2∫_0 ^1 (dx/((x+cosθ)^2 +sin^2 θ))  =(2/(sin^2 θ))∫_0 ^1 (dx/((((x+cosθ)/(sinθ)))^2 +1))  let u=((x+cosθ)/(sinθ))⇒dx=sinθdu  ∫_0 ^(π/2) (dt/(1+cosθsint))=(2/(sinθ))∫_(cotθ) ^((1+cosθ)/(sinθ)) (du/(u^2 +1))=(2/(sinθ))[arctan(((x+cosθ)/(sinθ)))]_0 ^1   =(2/(sinθ))(arctan(((1+cosθ)/(sinθ)))−arctan(cotθ))
letx=tan(t/2)dt=2dx1+x2sint=2x1+x20π/2dt1+cosθsint=201dx1+x2+2xcosθ=201dx(x+cosθ)2+sin2θ=2sin2θ01dx(x+cosθsinθ)2+1letu=x+cosθsinθdx=sinθdu0π/2dt1+cosθsint=2sinθcotθ1+cosθsinθduu2+1=2sinθ[arctan(x+cosθsinθ)]01=2sinθ(arctan(1+cosθsinθ)arctan(cotθ))

Leave a Reply

Your email address will not be published. Required fields are marked *