calculate-0-pi-2-dt-1-cos-sint- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 32351 by abdo imad last updated on 23/Mar/18 calculate∫0π2dt1+cosθsint. Answered by sma3l2996 last updated on 25/Mar/18 letx=tan(t/2)⇒dt=2dx1+x2sint=2x1+x2∫0π/2dt1+cosθsint=2∫01dx1+x2+2xcosθ=2∫01dx(x+cosθ)2+sin2θ=2sin2θ∫01dx(x+cosθsinθ)2+1letu=x+cosθsinθ⇒dx=sinθdu∫0π/2dt1+cosθsint=2sinθ∫cotθ1+cosθsinθduu2+1=2sinθ[arctan(x+cosθsinθ)]01=2sinθ(arctan(1+cosθsinθ)−arctan(cotθ)) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-the-value-of-0-pi-xdx-1-sinx-Next Next post: find-the-value-of-0-1-arctan-1-x-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.