Menu Close

calculate-0-pi-2-dx-1-cosx-cos-with-pi-lt-lt-pi-




Question Number 30178 by abdo imad last updated on 17/Feb/18
calculate  ∫_0 ^(π/2)      (dx/(1+cosx cosθ))  with −π<θ<π .
calculate0π2dx1+cosxcosθwithπ<θ<π.
Commented by prof Abdo imad last updated on 22/Feb/18
let put cosθ=t I= ∫_0 ^(π/2)     (dx/(1+tcosx)) the ch.tan((x/2))=u  give  I= ∫_0 ^∞    (1/(1+t ((1−u^2 )/(1+u^2 )))) ((2du)/(1+u^2 ))  I = ∫_0 ^∞         ((2du)/(1+u^2  +t(1−u^2 )))du  =∫_0 ^∞     ((2du)/(1+t +(1−t)u^2 ))= (2/(1+t))∫_0 ^∞    (du/(1+((1−t)/(1+t)) u^2 ))  let tben use the ch. (√((1−t)/(1+t))) u= α ⇒  I=  (2/(1+t))∫_0 ^∞      (1/(1+α^2 )) (√((1+t)/(1−t)))  dα  = (2/( (√(1−t^2 )))) ∫_0 ^∞    (dα/(1+α^2 )) = (π/( (√(1−t^2 )))) = (π/( (√(1−cos^2 θ))))⇒  I = (π/(∣sinθ∣))  if θ≠0  also we must study the case θ=0  ....
letputcosθ=tI=0π2dx1+tcosxthech.tan(x2)=ugiveI=011+t1u21+u22du1+u2I=02du1+u2+t(1u2)du=02du1+t+(1t)u2=21+t0du1+1t1+tu2lettbenusethech.1t1+tu=αI=21+t011+α21+t1tdα=21t20dα1+α2=π1t2=π1cos2θI=πsinθifθ0alsowemuststudythecaseθ=0.

Leave a Reply

Your email address will not be published. Required fields are marked *