calculate-0-pi-2-dx-2-cos-2-x-3-sin-2-x- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 60893 by mathsolverby Abdo last updated on 26/May/19 calculate∫0π2dx2cos2x+3sin2x Commented by maxmathsup by imad last updated on 27/May/19 letA=∫0π2dx2cos2x+3sin2x⇒A=∫0π2dx21+cos(2x)2+31−cos(2x)2=2∫0π2dx2+3+(2−3)cos(2x)=tanx=t2∫0+∞12+3+(2−3)1−t21+t2dt1+t2=2∫0∞1(1+t2)(2+3)+2−3dt=2∫0∞dt2+3+(2+3)t2+2−3=2∫0∞dt22+(2+3)t2=12∫0∞dt1+2+322t2changement2+322t=ugiveA=12∫0∞11+u2222+3du=22+3∫0∞du1+u2=π222+3. Answered by Prithwish sen last updated on 27/May/19 ∫dx2cos2x+3sin2x=∫sec2xdx2+3tan2xNowputtingtanx=vthensec2xdx=dvtheintegralchangesto∫dv2+3v2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-191961Next Next post: study-the-convergence-of-0-1-1-2x-1-x-ln-1-x-dx-and-determine-its-value- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.