Menu Close

calculate-0-pi-2-dx-2-cos-2-x-3-sin-2-x-




Question Number 60893 by mathsolverby Abdo last updated on 26/May/19
calculate ∫_0 ^(π/2)   (dx/( (√2)cos^2 x +(√3)sin^2 x))
calculate0π2dx2cos2x+3sin2x
Commented by maxmathsup by imad last updated on 27/May/19
let A =∫_0 ^(π/2)   (dx/( (√2)cos^2 x +(√3)sin^2 x)) ⇒ A =∫_0 ^(π/2)    (dx/( (√2)((1+cos(2x))/2) +(√3)((1−cos(2x))/2)))  =2 ∫_0 ^(π/2)    (dx/( (√2) +(√3) +((√2)−(√3))cos(2x))) =_(tanx=t)    2 ∫_0 ^(+∞)    (1/( (√2) +(√3)+((√2)−(√3))((1−t^2 )/(1+t^2 )))) (dt/(1+t^2 ))  =2 ∫_0 ^∞     (1/((1+t^2 )((√2) +(√3)) +(√2)−(√3))) dt  =2 ∫_0 ^∞       (dt/( (√2) +(√3) +((√2) +(√3))t^2  +(√2)−(√3))) =2∫_0 ^∞      (dt/(2(√2) +((√2)+(√3))t^2 ))  =(1/( (√2)))∫_0 ^∞     (dt/(1+(((√2) +(√3))/(2(√2)))t^2 ))   changement  (√(((√2) +(√3))/(2(√2) )))t =u give  A =(1/( (√2))) ∫_0 ^∞       (1/(1+u^2 )) (√((2(√2))/( (√2) +(√3)))) du =((√(√2))/( (√((√2) +(√3))))) ∫_0 ^∞     (du/(1+u^2 )) =(π/2) ((√(√2))/( (√((√2) +(√3))))) .
letA=0π2dx2cos2x+3sin2xA=0π2dx21+cos(2x)2+31cos(2x)2=20π2dx2+3+(23)cos(2x)=tanx=t20+12+3+(23)1t21+t2dt1+t2=201(1+t2)(2+3)+23dt=20dt2+3+(2+3)t2+23=20dt22+(2+3)t2=120dt1+2+322t2changement2+322t=ugiveA=12011+u2222+3du=22+30du1+u2=π222+3.
Answered by Prithwish sen last updated on 27/May/19
∫(dx/( (√2)cos^2 x+ (√3)sin^2 x)) =∫((sec^2 x dx)/( (√2)+(√(3 ))tan^2 x))  Now putting tanx = v  then sec^2 x dx =dv   the integral changes to  ∫(dv/( (√2)+(√3)v^2 ))
dx2cos2x+3sin2x=sec2xdx2+3tan2xNowputtingtanx=vthensec2xdx=dvtheintegralchangestodv2+3v2

Leave a Reply

Your email address will not be published. Required fields are marked *