Menu Close

calculate-0-pi-2-dx-cos-2-x-3-sin-2-x-




Question Number 83252 by mathmax by abdo last updated on 29/Feb/20
calculate ∫_0 ^(π/2)  (dx/(cos^2 x +(√3)sin^2 x))
calculate0π2dxcos2x+3sin2x
Commented by mathmax by abdo last updated on 29/Feb/20
I =∫_0 ^(π/2)  (dx/(((1+cos(2x))/2)+(√3)((1−cos(2x))/2))) =2∫_0 ^(π/2)  (dx/((1−(√3))cos(2x)+1+(√3)))  =_(2x=t)     2∫_0 ^π    (dt/(2{ (1−(√3))cost+1+(√3)))) =∫_0 ^π  (dt/((1−(√3))cost +1+(√3)))  =_(tan((t/2))=u)      ∫_0 ^∞     ((2du)/((1+u^2 ){(1−(√3))×((1−u^2 )/(1+u^2 )) +1+(√3)}))  =2∫_0 ^∞     (du/((1−(√3))(1−u^2 ) +(1+(√3))(1+u^2 )))  =2∫_0 ^∞     (du/(1−(√3)−(1−(√3))u^2  +(1+(√3))+(1+(√3))u^2 ))  =2∫_0 ^∞      (du/(2 +(1+(√3)−1+(√3))u^2 )) =2∫_0 ^∞  (du/(2+2(√3)u^2 ))=∫_0 ^∞    (du/(1+(√3)u^2 ))  =_((√(√3))u=z)      ∫_0 ^∞       (dz/((^4 (√3))(1+z^2 ))) =(1/((^4 (√3))))×(π/2)
I=0π2dx1+cos(2x)2+31cos(2x)2=20π2dx(13)cos(2x)+1+3=2x=t20πdt2{(13)cost+1+3)=0πdt(13)cost+1+3=tan(t2)=u02du(1+u2){(13)×1u21+u2+1+3}=20du(13)(1u2)+(1+3)(1+u2)=20du13(13)u2+(1+3)+(1+3)u2=20du2+(1+31+3)u2=20du2+23u2=0du1+3u2=3u=z0dz(43)(1+z2)=1(43)×π2
Answered by MJS last updated on 29/Feb/20
∫(dx/(cos^2  x +(√3)sin^2  x))=       [t=tan x → dx=(dt/(t^2 +1))]  =∫(dt/( (√3)t^2 +1))=(((27))^(1/4) /3)arctan (3)^(1/4) t =  =(((27))^(1/4) /3)arctan ((3)^(1/4) tan x) +C  ∫_0 ^(π/2) (dx/(cos^2  x +(√3)sin^2  x))=(((27))^(1/4) /6)π
dxcos2x+3sin2x=[t=tanxdx=dtt2+1]=dt3t2+1=2743arctan34t==2743arctan(34tanx)+Cπ20dxcos2x+3sin2x=2746π

Leave a Reply

Your email address will not be published. Required fields are marked *