Menu Close

calculate-0-pi-2-dx-cos-4-x-sin-4-x-




Question Number 34283 by math khazana by abdo last updated on 03/May/18
calculate  ∫_0 ^(π/2)       (dx/(cos^4 x +sin^4 x))
calculate0π2dxcos4x+sin4x
Commented by math khazana by abdo last updated on 08/May/18
let put I = ∫_0 ^(π/2)      (dx/(cos^4 x +sin^4 x))  I  = ∫_0 ^(π/2)     (dx/((cos^2 x+sin^2 x)^2  −2 cos^2 x sin^2 x))  = ∫_0 ^(π/2)      (dx/(1^2  −2 cos^2 x .sin^2 x))  = ∫_0 ^(π/2)      (dx/(1−2 ((1+cos(2x))/2).((1−cos(2x))/2)))  = ∫_0 ^(π/2)         (dx/(1−(1/2)(1−cos^2 (2x))))  = ∫_0 ^(π/2)        ((2dx)/(2 −1 +cos^2 (2x)))  = ∫_0 ^(π/2)     ((2dx)/(1+((1+cos(4x))/2))) =∫_0 ^(π/2)     ((4dx)/(3+ cos(4x)))  = _(4x=t)    ∫_0 ^(2π)       (dt/(3 +cost))  changement e^(it)  =z give  I = ∫_(∣z∣=1)         (1/(3 + ((z+z^(−1) )/2))) (dz/(iz))  = ∫_(∣z∣=1)       ((2dz)/(iz( 6+z +z^(−1) ))) = ∫_(∣z∣=1)    ((−2i)/(6z +z^2  +1))dz  let introduce the complex function  ϕ(z)=   ((−2i)/(z^2  +6z +1))  .poles of ϕ?
letputI=0π2dxcos4x+sin4xI=0π2dx(cos2x+sin2x)22cos2xsin2x=0π2dx122cos2x.sin2x=0π2dx121+cos(2x)2.1cos(2x)2=0π2dx112(1cos2(2x))=0π22dx21+cos2(2x)=0π22dx1+1+cos(4x)2=0π24dx3+cos(4x)=4x=t02πdt3+costchangementeit=zgiveI=z∣=113+z+z12dziz=z∣=12dziz(6+z+z1)=z∣=12i6z+z2+1dzletintroducethecomplexfunctionφ(z)=2iz2+6z+1.polesofφ?
Commented by math khazana by abdo last updated on 08/May/18
Δ^′  = 3^2 −1 =8 ⇒z_1 =−3 +2(√2)  z_2 =−3−2(√2)  ∣z_1 ∣ −1 =2(√2) −3−1= 2(√2) −4<0  ∣z_2 ∣−1 = 3+2(√2)−1= 2 +2(√2)>0 (to eliminate  from residus)  ∫_(∣z∣=1)   ϕ(z)dz =2iπ Res(ϕ,z_1 )  Res(ϕ,z_1 ) = ((−2i)/((z_1  −z_2 )))  = ((−2i)/(4(√2))) = ((−i)/(2(√2)))  ∫_(∣z∣=1)    ϕ(z)dz =2iπ .((−i)/(2(√2))) = (π/( (√2)))  I  = (π/( (√2)))  .
Δ=321=8z1=3+22z2=322z11=2231=224<0z21=3+221=2+22>0(toeliminatefromresidus)z∣=1φ(z)dz=2iπRes(φ,z1)Res(φ,z1)=2i(z1z2)=2i42=i22z∣=1φ(z)dz=2iπ.i22=π2I=π2.

Leave a Reply

Your email address will not be published. Required fields are marked *