calculate-0-pi-2-ln-2-sin-d- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 100967 by mathmax by abdo last updated on 29/Jun/20 calculate∫0π2ln(2+sinθ)dθ Answered by mathmax by abdo last updated on 01/Jul/20 I=∫0π2ln(2+sinθ)dθ⇒I=∫0π2(ln(2)+ln(1+12sinθ))dθ=π2ln(2)+∫0π2ln(1+12sinθ)dθletf(a)=∫0π2ln(1+asinθ)dθwith0<a<1wehavef′(a)=∫0π2sinθ1+asinθ=1a∫0π21+asinθ−11+asinθdθ=π2a−1a∫0π2dθ1+asinθ=tan(θ2)=tπ2a−1a∫012dt(1+t2)(1+a×2t1+t2)=π2a−2a∫01dt1+t2+2atwehave∫01dtt2+2at+1=∫01dtt2+2at+a2+1−a2=∫01dt(t+a)2+1−a2=t+a=1−a2u∫a1−a21+a1−a21−a2du(1−a2)(1+u2)=1−a×1+a(1−a)(1+a)∫a1−a21+a1−a2du1+u2=11−a2{arctan(1+a1−a2)−arctn(a1−a2)}⇒f(a)=∫0a11−z2arctan(1+z1−z2)dz−∫0a11−z2arctan(z1−z2)+cc=f(0)=0⇒f(a)=∫0a11−z2arctan(1+z1−z2)dz−∫0a11−z2arctan(z1−z2)dzI=π2ln(2)+f(12)=π2ln(2)+∫01211−z2arctan(1+z1−z2)−∫01211−z2arctan(z1−z2)dzrestcalculusofthisintegrals…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-0-1-2x-1-x-2-6-dx-Next Next post: find-the-fourier-series-of-the-function-f-x-x-2-x-0-x-2-0-x-2-help-me-sir- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.