Menu Close

calculate-0-pi-2-ln-2-sin-d-




Question Number 100967 by mathmax by abdo last updated on 29/Jun/20
calculate ∫_0 ^(π/2) ln(2+ sinθ)dθ
calculate0π2ln(2+sinθ)dθ
Answered by mathmax by abdo last updated on 01/Jul/20
I =∫_0 ^(π/2)  ln(2+sinθ)dθ ⇒I =∫_0 ^(π/2)  (ln(2)+ln(1+(1/2)sinθ))dθ  =(π/2)ln(2) +∫_0 ^(π/2)  ln(1+(1/2)sinθ)dθ  let f(a) =∫_0 ^(π/2)  ln(1+asinθ)dθ with 0<a<1  we have f^′ (a) =∫_0 ^(π/2)  ((sinθ)/(1+asinθ)) =(1/a)∫_0 ^(π/2)  ((1+asinθ −1)/(1+asinθ))dθ  =(π/(2a)) −(1/a) ∫_0 ^(π/2)  (dθ/(1+asinθ)) =_(tan((θ/2))=t)   (π/(2a))−(1/a) ∫_0 ^1  ((2dt)/((1+t^2 )(1+a×((2t)/(1+t^2 )))))  =(π/(2a)) −(2/a) ∫_0 ^1  (dt/(1+t^2  +2at))  we have   ∫_0 ^1  (dt/(t^2  +2at +1)) =∫_0 ^1  (dt/(t^2  +2at +a^2  +1−a^2 )) =∫_0 ^1  (dt/((t+a)^2  +1−a^2 ))  =_(t+a =(√(1−a^2 ))u)     ∫_(a/( (√(1−a^2 )))) ^((1+a)/( (√(1−a^2 ))))      (((√(1−a^2 ))du)/((1−a^2 )(1+u^2 )))  =(((√(1−a))×(√(1+a)))/((1−a)(1+a))) ∫_(a/( (√(1−a^2 )))) ^((1+a)/( (√(1−a^2 ))))      (du/(1+u^2 )) =(1/( (√(1−a^2 )))) { arctan(((1+a)/( (√(1−a^2 )))))−arctn((a/( (√(1−a^2 )))))} ⇒  f(a) =∫_0 ^a  (1/( (√(1−z^2 )))) arctan(((1+z)/( (√(1−z^2 )))))dz−∫_0 ^a  (1/( (√(1−z^2 )))) arctan((z/( (√(1−z^2 ))))) +c  c =f(0) =0 ⇒  f(a) =∫_0 ^a  (1/( (√(1−z^2 )))) arctan(((1+z)/( (√(1−z^2 )))))dz −∫_0 ^a  (1/( (√(1−z^2 )))) arctan((z/( (√(1−z^2 )))))dz  I =(π/2)ln(2)+f((1/2))  =(π/2)ln(2) +∫_0 ^(1/2)  (1/( (√(1−z^2 )))) arctan(((1+z)/( (√(1−z^2 )))))−∫_0 ^(1/(2 ))  (1/( (√(1−z^2 )))) arctan((z/( (√(1−z^2 )))))dz  rest calculus of this integrals....
I=0π2ln(2+sinθ)dθI=0π2(ln(2)+ln(1+12sinθ))dθ=π2ln(2)+0π2ln(1+12sinθ)dθletf(a)=0π2ln(1+asinθ)dθwith0<a<1wehavef(a)=0π2sinθ1+asinθ=1a0π21+asinθ11+asinθdθ=π2a1a0π2dθ1+asinθ=tan(θ2)=tπ2a1a012dt(1+t2)(1+a×2t1+t2)=π2a2a01dt1+t2+2atwehave01dtt2+2at+1=01dtt2+2at+a2+1a2=01dt(t+a)2+1a2=t+a=1a2ua1a21+a1a21a2du(1a2)(1+u2)=1a×1+a(1a)(1+a)a1a21+a1a2du1+u2=11a2{arctan(1+a1a2)arctn(a1a2)}f(a)=0a11z2arctan(1+z1z2)dz0a11z2arctan(z1z2)+cc=f(0)=0f(a)=0a11z2arctan(1+z1z2)dz0a11z2arctan(z1z2)dzI=π2ln(2)+f(12)=π2ln(2)+01211z2arctan(1+z1z2)01211z2arctan(z1z2)dzrestcalculusofthisintegrals.

Leave a Reply

Your email address will not be published. Required fields are marked *