Menu Close

calculate-0-pi-2-ln-cosx-sinx-ex-




Question Number 47112 by maxmathsup by imad last updated on 04/Nov/18
calculate   ∫_0 ^(π/2) ln(cosx+sinx)ex
calculate0π2ln(cosx+sinx)ex
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Nov/18
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Nov/18
0<∫_0 ^(π/2) ln(sinx+cosx)<(π/2)×0.5  0<I<(π/4)
0<0π2ln(sinx+cosx)<π2×0.50<I<π4
Commented by prof Abdo imad last updated on 06/Nov/18
let I =∫_0 ^(π/2) ln(cosx +sinx)dx ⇒  I =∫_0 ^(π/2) ln((√2)cos(x−(π/4)))dx=(π/4)ln(2)+∫_0 ^(π/2) ln(cos(x−(π/4)))dx  but ∫_0 ^(π/2) ln(cos(x−(π/4)))dx=_((π/4)−x=t) −∫_(π/4) ^(−(π/4)) ln(cost)dt  =∫_(−(π/4)) ^(π/4)  ln(cost)dt =2 ∫_0 ^(π/4) ln(cost)dt  let A =∫_0 ^(π/4) ln(cost)dt andB =∫_0 ^(π/4) ln(sint)dt  A+B =∫_0 ^(π/4) ln(costsint)dt=∫_0 ^(π/4) ln(((sin(2t))/2))dt  =−(π/4)ln(2)+∫_0 ^(π/4) ln(sin(2t))dt  =_(2t=u)  −(π/4)ln(2)+(1/2)∫_0 ^(π/2) ln(sinu)du  =−(π/4)ln(2)−(π/4)ln(2)=−(π/2)ln(2) also  A−B = ∫_0 ^(π/4) ln(cost)dt−∫_0 ^(π/4) ln(sint)dt but  ∫_0 ^(π/4) ln(sint)dt =_(t=(π/2)−x)    −∫_(π/2) ^(π/4) ln(cosx)dx  =∫_(π/4) ^(π/2)  ln(cosx)dx=∫_0 ^(π/2) ln(cosx)dx−∫_0 ^(π/4) ln(cosx)dx  =−(π/2)ln(2)−A ⇒A−B =−(π/2)ln2−A ⇒  2A =B−(π/2)ln(2) ⇒2A =−(π/2)ln(2)−A−(π/2)ln(2)  ⇒2A =−A −πln(2) ⇒3A=−πln(2) ⇒  A=−(π/3)ln(2)  ⇒I =−((2π)/3)ln(2).
letI=0π2ln(cosx+sinx)dxI=0π2ln(2cos(xπ4))dx=π4ln(2)+0π2ln(cos(xπ4))dxbut0π2ln(cos(xπ4))dx=π4x=tπ4π4ln(cost)dt=π4π4ln(cost)dt=20π4ln(cost)dtletA=0π4ln(cost)dtandB=0π4ln(sint)dtA+B=0π4ln(costsint)dt=0π4ln(sin(2t)2)dt=π4ln(2)+0π4ln(sin(2t))dt=2t=uπ4ln(2)+120π2ln(sinu)du=π4ln(2)π4ln(2)=π2ln(2)alsoAB=0π4ln(cost)dt0π4ln(sint)dtbut0π4ln(sint)dt=t=π2xπ2π4ln(cosx)dx=π4π2ln(cosx)dx=0π2ln(cosx)dx0π4ln(cosx)dx=π2ln(2)AAB=π2ln2A2A=Bπ2ln(2)2A=π2ln(2)Aπ2ln(2)2A=Aπln(2)3A=πln(2)A=π3ln(2)I=2π3ln(2).
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Nov/18
ln(cosx+sinx)  ∫_0 ^(π/2) ln{(√2) ×((1/( (√2)))sinx+(1/( (√2)))cosx)dx  (1/2)ln2∫_0 ^(π/2) dx+∫_0 ^(π/2) ln{sin((π/4)+x)}dx  I_1 =((1/2)ln2)×(π/2)=(π/4)ln2  I_2    wait...
ln(cosx+sinx)0π2ln{2×(12sinx+12cosx)dx12ln20π2dx+0π2ln{sin(π4+x)}dxI1=(12ln2)×π2=π4ln2I2wait

Leave a Reply

Your email address will not be published. Required fields are marked *