Menu Close

calculate-0-pi-2-sin-x-dx-cos-2-x-a-2-sin-2-x-dx-




Question Number 40140 by maxmathsup by imad last updated on 16/Jul/18
calculate  ∫_0 ^(π/2)    ((sin(x)dx)/(cos^2 x +a^2  sin^2 x))dx
calculate0π2sin(x)dxcos2x+a2sin2xdx
Commented by math khazana by abdo last updated on 20/Jul/18
let I = ∫_0 ^(π/2)     ((sinx)/(cos^2 x +a^2 sin^2 x))dx changement  cosx =t give   I  = −∫_0 ^1     ((−dt)/(t^2  +a^2 (1−t^2 )))  = ∫_0 ^1     (dt/(a^2  +(1−a^2 )t^2 )) = (1/a^2 ) ∫_0 ^1     (dt/(1+((1−a^2 )/a^2 )t^2 ))  ( a≠o)  case 1  1−a^2 >0 ⇔∣a∣<1  we do the changement  (√((1−a^2 )/a^2 )) t =u ⇒  I  = (1/a^2 )  ∫_0 ^(√((1−a^2 )/(a^2  )))         (1/(1+u^2 )) (√(a^2 /(1−a^2 ))) du  =((∣a∣)/(a^2  (√(1−a^2 ))))  ∫_0 ^((√(1−a^2 ))/(∣a∣))    (du/(1+u^2 ))  = ((ξ(a))/(a(√(1−a^2 )))) arctan(((√(1−a^2 ))/(∣a∣)))   ξ(a)=1 if a>0 and ξ(a)=−1 ifa<0  case 2  1−a^2 <0 ⇒∣a∣>1 ⇒  I = (1/a^2 ) ∫_0 ^1       (dt/(1−((a^2 −1)/a^2 )t^2 )) we do the changement  (√((a^2  −1)/a^2 )) t =u ⇒  I = (1/a^2 ) ∫_0 ^((√(a^2  −1))/(∣a∣))       (1/(1−u^2 ))  ((∣a∣)/( (√(a^2  −1)))) du  = ((ξ(a))/( (√(a^2  −1))))  (1/2)∫_0 ^((√(a^2  −1))/(∣a∣))    ((1/(1+u)) +(1/(1−u)))du  = ((ξ(a))/(2(√(a^2  −1)))) [ln∣((1+u)/(1−u))∣]_0 ^((√(a^2  −1))/(∣a∣))   =((ξ(a))/(2(√(a^2  −1)))) ln(((1+((√(a^2 −1))/(∣a∣)))/(1−((√(a^2  −1))/(∣a∣)))))  =((ξ(a))/(2(√(a^2 −1)))) ln(((∣a∣ +(√(a^2  −1)))/(∣a∣−(√(a^2  −1))))) .
letI=0π2sinxcos2x+a2sin2xdxchangementcosx=tgiveI=01dtt2+a2(1t2)=01dta2+(1a2)t2=1a201dt1+1a2a2t2(ao)case11a2>0⇔∣a∣<1wedothechangement1a2a2t=uI=1a201a2a211+u2a21a2du=aa21a201a2adu1+u2=ξ(a)a1a2arctan(1a2a)ξ(a)=1ifa>0andξ(a)=1ifa<0case21a2<0⇒∣a∣>1I=1a201dt1a21a2t2wedothechangementa21a2t=uI=1a20a21a11u2aa21du=ξ(a)a21120a21a(11+u+11u)du=ξ(a)2a21[ln1+u1u]0a21a=ξ(a)2a21ln(1+a21a1a21a)=ξ(a)2a21ln(a+a21aa21).
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Jul/18
t=cosx  dt=−sinx dx  ∫_1 ^0 ((−dt)/(t^2 +a^2 (1−t^2 )))  ∫_0 ^1 (dt/(a^2 +t^2 (1−a^2 )))  =(1/(1−a^2 )) ∫_0 ^1 (dt/((a^2 /(1−a^2 ))+t^2 ))  =(1/(1−a^2 ))×(((√(1−a^2 )) )/a)∣tan^(−1) ((t/( (√(a^2 /(1−a^2 ))))))∣_0 ^1   =(((√(1−a^2 )) )/((a−a^3 )))∣tan^(−1) (((t(√(1−a^2  )))/a))∣_0 ^1   =((√(1−a^2 ))/(a−a^3 ))tan^(−1) (((√(1−a^2 ))/a))
t=cosxdt=sinxdx10dtt2+a2(1t2)01dta2+t2(1a2)=11a201dta21a2+t2=11a2×1a2atan1(ta21a2)01=1a2(aa3)tan1(t1a2a)01=1a2aa3tan1(1a2a)
Commented by math khazana by abdo last updated on 20/Jul/18
sir Tanmay  you must studythe cases ∣a∣>1  and ∣a∣<1 ....
sirTanmayyoumuststudythecasesa∣>1anda∣<1.

Leave a Reply

Your email address will not be published. Required fields are marked *