Question Number 40140 by maxmathsup by imad last updated on 16/Jul/18

Commented by math khazana by abdo last updated on 20/Jul/18
![let I = ∫_0 ^(π/2) ((sinx)/(cos^2 x +a^2 sin^2 x))dx changement cosx =t give I = −∫_0 ^1 ((−dt)/(t^2 +a^2 (1−t^2 ))) = ∫_0 ^1 (dt/(a^2 +(1−a^2 )t^2 )) = (1/a^2 ) ∫_0 ^1 (dt/(1+((1−a^2 )/a^2 )t^2 )) ( a≠o) case 1 1−a^2 >0 ⇔∣a∣<1 we do the changement (√((1−a^2 )/a^2 )) t =u ⇒ I = (1/a^2 ) ∫_0 ^(√((1−a^2 )/(a^2 ))) (1/(1+u^2 )) (√(a^2 /(1−a^2 ))) du =((∣a∣)/(a^2 (√(1−a^2 )))) ∫_0 ^((√(1−a^2 ))/(∣a∣)) (du/(1+u^2 )) = ((ξ(a))/(a(√(1−a^2 )))) arctan(((√(1−a^2 ))/(∣a∣))) ξ(a)=1 if a>0 and ξ(a)=−1 ifa<0 case 2 1−a^2 <0 ⇒∣a∣>1 ⇒ I = (1/a^2 ) ∫_0 ^1 (dt/(1−((a^2 −1)/a^2 )t^2 )) we do the changement (√((a^2 −1)/a^2 )) t =u ⇒ I = (1/a^2 ) ∫_0 ^((√(a^2 −1))/(∣a∣)) (1/(1−u^2 )) ((∣a∣)/( (√(a^2 −1)))) du = ((ξ(a))/( (√(a^2 −1)))) (1/2)∫_0 ^((√(a^2 −1))/(∣a∣)) ((1/(1+u)) +(1/(1−u)))du = ((ξ(a))/(2(√(a^2 −1)))) [ln∣((1+u)/(1−u))∣]_0 ^((√(a^2 −1))/(∣a∣)) =((ξ(a))/(2(√(a^2 −1)))) ln(((1+((√(a^2 −1))/(∣a∣)))/(1−((√(a^2 −1))/(∣a∣))))) =((ξ(a))/(2(√(a^2 −1)))) ln(((∣a∣ +(√(a^2 −1)))/(∣a∣−(√(a^2 −1))))) .](https://www.tinkutara.com/question/Q40346.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Jul/18

Commented by math khazana by abdo last updated on 20/Jul/18
