calculate-0-pi-2-x-2-sin-2-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 41054 by turbo msup by abdo last updated on 01/Aug/18 calculate∫0π2x2sin2xdx. Commented by maxmathsup by imad last updated on 02/Aug/18 wehavecos2x=11+tan2x⇒sin2x=1−11+tan2x=tan2x1+tan2x⇒I=∫0π2x2sin2xdx=∫0π2(1+tan2x)x2tan2xdxchangementtanx=tgiveI=∫0∞(1+t2)(arctant)2t2dt1+t2=∫0∞(arctant)2t2dtbypartsu′=1t2andv=(arctant)2⇒I=[−1t(arctant)2]0+∞−∫0∞−1t2arctant1+t2dt=2∫0∞arctantt(1+t2)dtletintroducetheparametricfunctionf(x)=∫0∞arctan(xt)t(1+t2)dtwehavef′(x)=∫0∞t(1+x2t2)t(1+t2)dt=∫0∞dt(1+t2)(1+x2t2)forx2≠1wehavef′(x)=∫0∞1x2−1(11+t2−11+x2t2)dt=1x2−1∫0∞dt1+t2−1x2−1∫0∞dt1+x2t2butbut∫0∞dt1+t2=π2∫0∞dt1+x2t2dt=xt=u∫0∞11+u2dux=1x[arctan(xt)]0+∞⇒f′(x)=π2(x2−1)−π2x(x2−1)=π2(x2−1){1−1x}=π(x−1)2x(x2−1)=π2x(x+1)⇒f(x)=π2∫.xdtt(t+1)=π2∫.x(1t−1t+1)dt=π2ln∣xx+1∣+lweseethatl=limx→+∞f(x)⇒f(x)=π2ln∣xx+1∣+l⇒I=2f(1)=2{π2ln(12)+l}=2{−π2ln(2)+l}⇒I=2l−πln(2)withl=limx→+∞f(x). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-the-value-of-pi-6-pi-4-x-1-cos-2-x-dxr-Next Next post: Question-106591 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.