Menu Close

calculate-0-pi-2-x-2-sin-2-x-dx-




Question Number 41054 by turbo msup by abdo last updated on 01/Aug/18
calculate ∫_0 ^(π/2)   (x^2 /(sin^2 x))dx .
calculate0π2x2sin2xdx.
Commented by maxmathsup by imad last updated on 02/Aug/18
we have cos^2 x =(1/(1+tan^2 x)) ⇒sin^2 x =1−(1/(1+tan^2 x)) =((tan^2 x)/(1+tan^2 x)) ⇒  I = ∫_0 ^(π/2)  (x^2 /(sin^2 x)) dx = ∫_0 ^(π/2)  (((1+tan^2 x)x^2 )/(tan^2 x)) dx   changement tanx =t give  I = ∫_0 ^∞    (((1+t^2 ) (arctant)^2 )/t^2 ) (dt/(1+t^2 )) = ∫_0 ^∞    (((arctant)^2 )/t^2 ) dt by parts u^′  =(1/t^2 )  and v =(arctant)^2  ⇒ I =[−(1/t) (arctant)^2 ]_0 ^(+∞)  −∫_0 ^∞  −(1/t) ((2arctant)/(1+t^2 ))dt  = 2 ∫_0 ^∞    ((arctant)/(t(1+t^2 ))) dt let introduce the parametric function  f(x) =∫_0 ^∞   ((arctan(xt))/(t(1+t^2 ))) dt  we have   f^′ (x) = ∫_0 ^∞     (t/((1+x^2 t^2 )t(1+t^2 )))dt =∫_0 ^∞    (dt/((1+t^2 )(1+x^2 t^2 ))) for x^2  ≠1 we have  f^′ (x)= ∫_0 ^∞   (1/(x^2 −1)) ( (1/(1+t^2 )) −(1/(1+x^2 t^2 )))dt = (1/(x^2 −1)) ∫_0 ^∞   (dt/(1+t^2 )) −(1/(x^2 −1)) ∫_0 ^∞    (dt/(1+x^2 t^2 )) but  but ∫_0 ^∞    (dt/(1+t^2 )) =(π/2)  ∫_0 ^∞    (dt/(1+x^2 t^2 ))dt =_(xt =u)    ∫_0 ^∞     (1/(1+u^2 )) (du/x) = (1/x) [arctan(xt)]_0 ^(+∞)  ⇒  f^′ (x)= (π/(2(x^2 −1))) −(π/(2x(x^2 −1))) =(π/(2(x^2 −1))){1−(1/x)} =((π(x−1))/(2x(x^2 −1)))  = (π/(2x(x+1))) ⇒f(x) = (π/2) ∫_. ^x  (dt/(t(t+1))) =(π/2) ∫_. ^x  ((1/t)−(1/(t+1)))dt  =(π/2)ln∣(x/(x+1))∣ +l we see that l=lim_(x→+∞) f(x)  ⇒  f(x) =(π/2)ln∣(x/(x+1))∣ +l  ⇒ I =2f(1) =2{(π/2)ln((1/2))+l}  =2{−(π/2)ln(2)+l} ⇒ I =2l −πln(2) with l=lim_(x→+∞ ) f(x) .
wehavecos2x=11+tan2xsin2x=111+tan2x=tan2x1+tan2xI=0π2x2sin2xdx=0π2(1+tan2x)x2tan2xdxchangementtanx=tgiveI=0(1+t2)(arctant)2t2dt1+t2=0(arctant)2t2dtbypartsu=1t2andv=(arctant)2I=[1t(arctant)2]0+01t2arctant1+t2dt=20arctantt(1+t2)dtletintroducetheparametricfunctionf(x)=0arctan(xt)t(1+t2)dtwehavef(x)=0t(1+x2t2)t(1+t2)dt=0dt(1+t2)(1+x2t2)forx21wehavef(x)=01x21(11+t211+x2t2)dt=1x210dt1+t21x210dt1+x2t2butbut0dt1+t2=π20dt1+x2t2dt=xt=u011+u2dux=1x[arctan(xt)]0+f(x)=π2(x21)π2x(x21)=π2(x21){11x}=π(x1)2x(x21)=π2x(x+1)f(x)=π2.xdtt(t+1)=π2.x(1t1t+1)dt=π2lnxx+1+lweseethatl=limx+f(x)f(x)=π2lnxx+1+lI=2f(1)=2{π2ln(12)+l}=2{π2ln(2)+l}I=2lπln(2)withl=limx+f(x).

Leave a Reply

Your email address will not be published. Required fields are marked *