Question Number 174838 by mnjuly1970 last updated on 12/Aug/22

Answered by princeDera last updated on 12/Aug/22
![calculate Ω = ∫_0 ^( (π/2)) (( x^( 2) )/(( sin(x)+cos(x))^( 2) ))dx=? Ω = ∫_0 ^(π/2) (x^2 /(1 + sin (2x)))dx sin (2x) = ((1 − e^(−4ix) )/(2ie^(−2ix) )) Ω = 2i∫_0 ^(π/2) ((x^2 e^(−2ix) )/(2ie^(−2ix) + 1 − e^(−4ix) ))dx let z = e^(−2ix) dz =−2ie^(−2ix) dx ⇒ −(dz/(2iz))=dx and x = −(1/(2i))ln (z) Ω = −(1/(4i))∫_C ((ln^2 (z) )/(2iz+1−z^2 ))dz where the contour C is in the first quadrant Ω = (1/(4i))∫_C ((ln^2 (z))/((z−i)^2 ))dz double poles appear at z=i and they are in the contour Ω = (1/(4i))×2πi[(d/dz)ln^2 (z)]_(z=i) = (π/2){((2ln (i))/i)} ln (i) = i(π/2) Ω = (π/2)×((2iπ)/(2i)) = (π^2 /2) Ω = (π^2 /2)](https://www.tinkutara.com/question/Q174839.png)
Commented by Tawa11 last updated on 12/Aug/22

Commented by Frix last updated on 12/Aug/22

Commented by Frix last updated on 12/Aug/22

Commented by princeDera last updated on 12/Aug/22

Commented by Frix last updated on 13/Aug/22

Answered by mnjuly1970 last updated on 13/Aug/22
![Ω= (1/2) ∫_0 ^( (π/2)) (( x^( 2) )/(sin^( 2) (x+(π/4))))dx =^(i.b.p) (1/2) {[−cot(x+(π/4))x^( 2) ]_0 ^( (π/2)) +2∫_0 ^( (π/2)) xcot(x+(π/4))dx = (π^( 2) /8) +∫_0 ^( (π/2)) x.cot(x+(π/4))dx =^(i.b.p) (π^( 2) /8) + {[xlnsin(x+(π/4))]_0 ^(π/2) −∫_0 ^( (π/2)) lnsin(x+(π/4))dx} =(π^( 2) /8) +(π/2) ln(((√2)/2)) −∫_(−(π/4)) ^( (π/4)) lncos(x)dx = (π^( 2) /8) −(π/4) ln(2)−2∫_0 ^( (π/4)) lncos(x)dx =_(ln(cos(x))^( ∗∗) ) ^(fourier series) (π^( 2) /8) −(π/4)ln(2)−2{(G/2)−(π/4)ln(2)} = (π^( 2) /8) +(π/4) ln(2)−G ∗∗ : ln(cos(x))=^? −ln(2)−Σ_(n=1) ^∞ (((−1)^(n−1) cos(2nx)))/n)](https://www.tinkutara.com/question/Q174873.png)