Menu Close

calculate-0-pi-2-x-sinx-cosx-tan-2-x-cotan-2-x-dx-ctanx-1-tanx-




Question Number 50414 by Abdo msup. last updated on 16/Dec/18
calculate ∫_0 ^(π/2)    ((x sinx cosx)/(tan^2 x +cotan^2 x))dx  ctanx =(1/(tanx))
calculate0π2xsinxcosxtan2x+cotan2xdxctanx=1tanx
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Dec/18
I=∫_0 ^(π/2) ((((π/2)−x)cosxsinx)/(cot^2 x+tan^2 x))dx  2I=∫_0 ^(π/2) ((((π/2)−x)cosxsinx+xsinxcosx)/(cot^2 x+tan^2 x))dx  2I=∫_0 ^(π/2) (((π/2)sinxcosx)/(tan^2 x+cot^2 x))dx  2I=(π/2)∫_0 ^(π/2) ((tanxcos^2 x)/(tan^2 x+(1/(tan^2 x))))dx  now I_1 =∫((tanx)/((1+tan^2 x)(tan^2 x+(1/(tan^2 x)))))dx  t=tanx  dt=sec^2 x dx  (dt/(1+t^2 ))=dx  ∫(t/((1+t^2 )(t^2 +(1/t^2 ))))×(dt/(1+t^2 ))  ∫(t^3 /((1+t^2 )^2 (t^4 +1)))dt  k=t^2    dk=2tdt     (dk/2)=tdt  ∫((k×(dk/2))/((1+k)^2 (1+k^2 )))  (1/4)∫((2kdk)/((1+k)^2 (1+k^2 )))  (1/4)∫(((1+k)^2 −(1+k^2 ))/((1+k)^2 (1+k^2 )))dk  (1/4)∫(dk/(1+k^2 ))−(1/4)∫(dk/((1+k)^2 ))  =(1/4)tan^(−1) (k)−(1/4)×(((1+k)^(−2+1) )/(−2+1))  =(1/4)tan^(−1) (k)+(1/(4(1+k)))  =(1/4)tan^(−1) (t^2 )+(1/(4(1+t^2 )))  =(1/4)tan^(−1) (tan^2 x)+(1/(4(1+tan^2 x)))  2I=(π/2)×∣(1/4)tan^(−1) (tan^2 x)+(1/(4(1+tan^2 x)))∣_0 ^(π/2)   2I=(π/8)[{(tan^(−1) (tan^2 (π/2))+(1/(1+tan^2 (π/2))))}−{(tan^(−1) (0)+(1/(1+0)))}]  I=(π/(16))[(tan^(−1) (∞)+(1/(1+∞)))−(1)]  I=(π/(16))((π/2)+0−1)  I=(π^2 /(32))−(π/(16))  pls check...
I=0π2(π2x)cosxsinxcot2x+tan2xdx2I=0π2(π2x)cosxsinx+xsinxcosxcot2x+tan2xdx2I=0π2π2sinxcosxtan2x+cot2xdx2I=π20π2tanxcos2xtan2x+1tan2xdxnowI1=tanx(1+tan2x)(tan2x+1tan2x)dxt=tanxdt=sec2xdxdt1+t2=dxt(1+t2)(t2+1t2)×dt1+t2t3(1+t2)2(t4+1)dtk=t2dk=2tdtdk2=tdtk×dk2(1+k)2(1+k2)142kdk(1+k)2(1+k2)14(1+k)2(1+k2)(1+k)2(1+k2)dk14dk1+k214dk(1+k)2=14tan1(k)14×(1+k)2+12+1=14tan1(k)+14(1+k)=14tan1(t2)+14(1+t2)=14tan1(tan2x)+14(1+tan2x)2I=π2×14tan1(tan2x)+14(1+tan2x)0π22I=π8[{(tan1(tan2π2)+11+tan2π2)}{(tan1(0)+11+0)}]I=π16[(tan1()+11+)(1)]I=π16(π2+01)I=π232π16plscheck

Leave a Reply

Your email address will not be published. Required fields are marked *