calculate-0-pi-2-x-sinx-cosx-tan-2-x-cotan-2-x-dx-ctanx-1-tanx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 50414 by Abdo msup. last updated on 16/Dec/18 calculate∫0π2xsinxcosxtan2x+cotan2xdxctanx=1tanx Answered by tanmay.chaudhury50@gmail.com last updated on 17/Dec/18 I=∫0π2(π2−x)cosxsinxcot2x+tan2xdx2I=∫0π2(π2−x)cosxsinx+xsinxcosxcot2x+tan2xdx2I=∫0π2π2sinxcosxtan2x+cot2xdx2I=π2∫0π2tanxcos2xtan2x+1tan2xdxnowI1=∫tanx(1+tan2x)(tan2x+1tan2x)dxt=tanxdt=sec2xdxdt1+t2=dx∫t(1+t2)(t2+1t2)×dt1+t2∫t3(1+t2)2(t4+1)dtk=t2dk=2tdtdk2=tdt∫k×dk2(1+k)2(1+k2)14∫2kdk(1+k)2(1+k2)14∫(1+k)2−(1+k2)(1+k)2(1+k2)dk14∫dk1+k2−14∫dk(1+k)2=14tan−1(k)−14×(1+k)−2+1−2+1=14tan−1(k)+14(1+k)=14tan−1(t2)+14(1+t2)=14tan−1(tan2x)+14(1+tan2x)2I=π2×∣14tan−1(tan2x)+14(1+tan2x)∣0π22I=π8[{(tan−1(tan2π2)+11+tan2π2)}−{(tan−1(0)+11+0)}]I=π16[(tan−1(∞)+11+∞)−(1)]I=π16(π2+0−1)I=π232−π16plscheck… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-calculate-U-n-0-pi-dx-1-cos-2-nx-with-n-from-N-2-f-continue-from-0-pi-to-R-find-lim-n-0-pi-f-x-1-cos-2-nx-dx-Next Next post: x-y-z-R-2x-3y-4z-1-1-x-1-y-1-z-smallest-integer-value- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.